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SUMMARY

Simultaneous recordings of large populations of neu-
rons in behaving animals allow detailed observation
of high-dimensional, complex brain activity. However,
experimental approaches often focus on singular
behavioral paradigms or brain areas. Here, we re-
corded whole-brain neuronal activity of larval zebra-
fish presented with a battery of visual stimuli while
recording fictive motor output. We identified neurons
tuned to each stimulus type and motor output and
discoveredgroupsof neurons in the anterior hindbrain
that respond todifferent stimuli eliciting similar behav-
ioral responses. These convergent sensorimotor
representationswereonlyweakly correlated to instan-
taneous motor activity, suggesting that they critically
inform, but do not directly generate, behavioral
choices.Tocatalogbrain-wideactivitybeyondexplicit
sensorimotor processing, we developed an unsuper-
vised clustering technique that organizes neurons
into functional groups. These analyses enabled a
broad overview of the functional organization of the
brain and revealed numerous brain nuclei whose neu-
rons exhibit concerted activity patterns.

INTRODUCTION

Until recently, our circuit-level understanding of the brain has been

built up from targeted studies of individual brain regions. While

such approaches have enabled a detailed understanding of a

plethora of specific brain functions, they have difficulty revealing

emergent, brain-wide functional activity that results from interac-
tions between brain areas. Moreover, they tend to bias ob-

servations toward activity closely related to known behavioral

paradigms, leavingabroad rangeof salient activitypatternsundis-

covered. Recent advances in functional imaging technology have

begun to release these restrictions, making simultaneous

recording across large brain areas possible (Lemon et al., 2015;

Peron et al., 2015; Prevedel et al., 2014). In the case of the larval

zebrafish, the small size and transparency of the animal make it

possible to record activity from the whole brain at single-cell reso-

lution in a behaving animal (Ahrens et al., 2013a; Cong et al., 2017;

Kim et al., 2017; Portugues et al., 2014; Vladimirov et al., 2014).

Whole-brain imaging has enabled comprehensive analysis of

activity underlying two innate sensorimotor responses—photo-

taxis (Wolf et al., 2017) and the optomotor response (Naumann

et al., 2016)—as well as spontaneous swimming behavior

(Dunn et al., 2016a), resulting in the discovery of specific brain re-

gions involved in these sensorimotor pathways. However, the

relationship among these disparate sensorimotor pathways has

not been investigated in depth. Here we ask, how do brain-

wide populations of neurons represent these different stimuli

and associated behaviors, and are there intermediate sensory/

motor representations where different sensorimotor pathways

converge? To extend the scope of whole-brain investigations,

and to enable such a study of the relationships between different

sensorimotor transformations,wepresentedabattery of different

visual stimuli to each fish (Figure 1C), allowing us to examine the

same neurons in different behaviorally relevant contexts and to

obtain a more comprehensive view of their converging or

diverging contributions across multiple sensorimotor pathways.

Whole-brain imagingcanalsocapturemanysalient activitypat-

terns that are unrelated to the explicit processing of experimental

stimuli, and it presents an opportunity to systematically catalog

such activity patterns. However, inspecting and analyzing the

activity of �100,000 neurons poses a significant computational

challenge and requires the right tools. Many analysis approaches
Neuron 100, 1–15, November 21, 2018 ª 2018 Elsevier Inc. 1
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Figure 1. Whole-Brain Recordings of Neuronal Activity

(A) Schematic of experimental setup for fictive swimming combined with light-sheet imaging (see STAR Methods).

(B) Illustration of functional dataset format. Whole-brain volumes were imaged at �2 volumes per s for �50 min (2.11 ± 0.21 volumes per s; 6,800 ± 470 time

frames, n = 18 fish). The activity traces of individual neurons were automatically extracted for 8.0 3 104 ± 1.6 3 104 cellular ROI’s per animal (n = 18). Scale

bar, 50 mm.

(C) Illustration of visual stimuli presented during functional imaging. Four stimulus paradigms from left to right: phototactic stimulus (phT), moving stripes

(Optomotor response or OMR), expanding dot (looming or visual escape response), and dark flashes.

(D) Example neuronal activity of single-neuron ROIs within an imaging plane (right inset) in the tectal region in the midbrain (cell activity is Z score normalized). The

stimulus (phototactic stimuli alternating withwhite background) is illustratedwith a bar above the calcium traces, and the recorded fictive behavior is plotted at the

bottom of the panel, with three plots indicating left turns, forward swims, and right turns from top to bottom.

(E) Image stacks were registered to the Z-brain reference brain atlas (Randlett et al., 2015) containing �300 labels of anatomical regions. Scale bar, 50 mm.
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have been developed for the interpretation of neural population

activity data based on projections to low-dimensional spaces

(Cunningham and Yu, 2014; Freeman et al., 2014; Lopes-dos-

Santos et al., 2013), regression (Feierstein et al., 2015; Miri

et al., 2011; Portugues et al., 2014;Wolf et al., 2017), noise corre-

lation (Averbeck et al., 2006; Cohen and Kohn, 2011), and clus-

tering (Bianco and Engert, 2015; Romano et al., 2015, 2017).

Here, we developed a density-based agglomerative clustering

method for discovering groups of neurons with similar dynamics.

Although cells were grouped solely based on functional activity,

many of the resulting clusters were anatomically compact,

revealing known as well as previously uncharacterized brain

structures. We implemented our analysis tools with a custom

graphical user interface (GUI) for interactive and flexible data

exploration. The code, as well as all the data, is made publicly

available to enable community efforts for mining these datasets

to discover deeper structure in whole-brain neuronal activity

and its relation to visual stimuli and behavior.

RESULTS

Whole-Brain Recordings of Neuronal Activity
Using a light-sheet imaging system reported previously (Vladi-

mirov et al., 2014; Figure 1A), we recorded the activity of the ma-

jority of neurons in the larval zebrafish brain simultaneously,

while presenting a battery of visual stimuli and recording fictive

swimming behavior. For each fish, calcium imaging datawere re-

corded at �2 volumes per s for �50 min (2.11 ± 0.21 volumes

per s; 6,800 ± 470 time frames, n = 18 fish) (Figures 1B and

S1E; Videos S1 and S2). The pan-neuronally expressed calcium

indicator GCaMP6f (Chen et al., 2013) was localized to the cell
2 Neuron 100, 1–15, November 21, 2018
nuclei by fusing it to the histone H2B protein (Vladimirov et al.,

2014), which facilitates automatic cell segmentation performed

via a template-matching algorithm (Kawashima et al., 2016).

We thus obtained the activity traces of �80,000 cellular ROIs

per fish (a total of 1.4 million ROIs, 8.0 3 104 ± 1.6 3 104 ROIs

for 18 animals; example traces in Figure 1D), accounting for

the vast majority of neurons in the brain with the exception of

the most ventral part (Figure S1A).

Blocks of visual stimulus patterns associatedwith the following

behavioral paradigms were projected onto a screen below the

fish during imaging (Figure 1C). (1) Phototaxis (phT): larval zebra-

fish are attracted by light, are averse to darkness, and use spatial

differences in luminance to guide their navigation (Brockerhoff

et al., 1995; Burgess et al., 2010). We presented a half-field

dark stimulus on either the left or the right side, separated in

time by a whole-field white baseline. (2) The optomotor response

(OMR): this is a position-stabilizing reflex to whole-field visual

motion, in which fish turn and swim in the direction of perceived

motion (Orger and Baier, 2005; Orger et al., 2000). The stimuli

used were whole-field stripes moving in different directions. (3)

The visual escape (looming) response: in free-swimming fish, ex-

panding discs elicit an avoidance response; although in tethered

preparations fish often exhibit freezing behavior, there is still a

strong sensory-related response in large areas of the brain

(Dunn et al., 2016a; Heap et al., 2018; Temizer et al., 2015; Yao

et al., 2016). The looming stimuli were presented from either the

left or right side of the fish. (4) The dark-flash response (DF):

this reflex is characterized by long-latency, large-angle turns in

response to sudden darkening of the environment (Burgess and

Granato, 2007; Chen and Engert, 2014). Alternating whole-field

dark and bright stimuli were used for this stimulus block. (5)
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Spontaneousbehavior: in the absence of visual stimuli, fish spon-

taneously swim in alternating sequences of repeated turns to the

left and to the right (Dunn et al., 2016b). For this block, fish were

imaged under homogeneous background illumination.

During imaging sessions, fictive swim signals were detected

by extracellular recordings of the descending axial motor neu-

rons on each side of the tail (Ahrens et al., 2012; Masino and

Fetcho, 2005). These recordings were reconstructed into fictive

swim bouts, which were used to decode turns (Figure 1D, bot-

tom bar; STAR Methods; Ahrens et al., 2013b; Dunn et al.,

2016b). We then used the fictive swim bouts to determine

whether the stimuli reliably elicit directional swims during our

experiments. We found that, for all stimuli, the vast majority of re-

cordings showed significant stimulus-driven behavior, while

there is also clear variability in the robustness of the behavior

response within the population (Figure S1G).

In order to make anatomical comparisons across experiments

with different fish, we registered the functional imaging stacks to

each other (Figures S1B and S1C; STAR Methods), and also to

the Z-Brain atlas for larval zebrafish (Randlett et al., 2015), which

contains molecular labels and definitions for known anatomical

regions (Figures 1E and S1D). To enable intuitive data analysis,

we developed a custom interactive platform in MATLAB (Fig-

ure S1F; code and data available online, see Data and Software

Availability in the STAR Methods) to efficiently explore this data

in both functional and anatomical contexts.

Identification of Sensory-Related Neurons
A first step toward understanding the brain’s sensorimotor trans-

formations is identifying cells whose neural activity closely tracks

the stimulus input. To do this, we simulated stimulus-responsive

activity traces for each stimulus type (stimulus regressors) and

quantified how similar each cell’s activity was to each stimulus

regressor (regression coefficients) (Figures 2A, S2A and S2B;

see STAR Methods). To visualize these results, we plotted

whole-brain stimulus tuning maps, showing the anatomical loca-

tion of all cells with high regression coefficients for each stimulus

type (Figures 2B–2E).

The phototaxis (phT) tuning map (Figures 2B and S2C) shows

lateralized and symmetric tuning dispersed throughout the

midbrain optic tectum, as well as active populations in the cere-

bellum and anterior hindbrain. The lobes of the optic tectum,

which receive input from the contralateral eye, display more

abundant responses to the dark half of the stimulus than to the

bright half. The moving stripes (OMR) stimulus elicits strong

and robust responses in the pretectum and anterior hindbrain

(Figure 2C; see also Figure S2D for OMR forward versus back-

ward), consistent with previously reported tuning maps (Kubo

et al., 2014; Naumann et al., 2016). The looming stimulus evokes

widespread, bilaterally symmetric activity patterns in large areas

of the tectum and in stereotypical locations within the forebrain,

diencephalon (thalamus, habenula), and hindbrain (Figure 2D).

Previous studies have also identified looming-responsive cells

in the optic tectum and demonstrated that looming-evoked es-

capes are mediated via the Mauthner system in the hindbrain

(Dunn et al., 2016a). The activity maps for dark and bright

whole-field stimuli (Figure 2E) are also bilaterally symmetrical

and quite distinct from the other maps. The dark field map over-
laps partially with the phototaxis map, but also exhibits unique

activation in tectum (the homolog of themammalian superior col-

liculus), pretectum, habenula, pallium (related to mammalian

areas including cortex, hippocampus, and striatum), and cere-

bellum, whereas the activity related to bright field is primarily

located close to the midline in the midbrain area.

The preceding regression analysis is powerful enough to iden-

tify distinct stimulus-tuning maps, but is implicitly biased toward

cells that show sustained responses to stimuli and canmiss cells

that have different response patterns (for example, transiently

active at the onset of the stimulus). To detect these more com-

plex responses, we can take advantage of the fact that even

complicated stimulus responses will still be periodic with the

same frequency as the experimental stimulus blocks. Therefore,

the cells whose activity is most periodic can be interpreted as the

most stimulus-locked (sensory-related), without bias toward

specific temporal activity patterns. To catalog major patterns

of sensory-related cell activity, we extracted the periodic (trial-

averaged) component of activity for each cell (Figure 2F) and

ranked cells based on the magnitude (variance explained) of

the periodic component (Figure 2G). We then selected highly

periodic cells for each stimulus type and sorted them into clus-

ters using k-means clustering (see STAR Methods), revealing a

range of representative activity patterns with diverse temporal

response types (see Figures 2H–2K, S2E, and S2 legends for

detailed descriptions of clusters). Responses to phototaxis (Fig-

ures 2H and S2E) included sustained activity in the midbrain dur-

ing phT, whole-field bright, or half-field bright stimuli (see also

Figures S2E–S2I), ramping activation in the superior (dorsal)

raphe nucleus and dorsal posterior hindbrain and cells in the

midbrain transiently activated by the onset of phT (Figure S2J).

Responses to OMR (Figure 2I) included various combinations

of direction-selective tuning in the pretectum, optic tectum,

anterior hindbrain, and dorsal hindbrain as well as cells that pref-

erentially respond to the bright stimulus between OMR stimulus

presentations (Figure S2K). Clusters responsive to looming (Fig-

ure 2J) included populations of direction-selective cells in the

optic tectum and anterior hindbrain along with bilaterally respon-

sive cells in the diencephalon and medial hindbrain. Dark-field

tuned cells (Figure 2K) were broadly situated throughout the

brain, but densely populated in anterior hindbrain (left side in

this example fish; laterization varies), while light-tuned cells

were concentrated in the opposite-side anterior hindbrain and

other locations consistent with bright-selective clusters from

the phT and OMR maps. Because this approach utilizes

whole-brain imaging data and is sensitive to any stimulus-locked

activity patterns, it has the potential to produce a comprehensive

list of stimulus-driven functional cell types.

Identification of Motor-Related Neurons
We next identified cells whose activity was closely related to

motor output, near the ‘‘endpoint’’ of the sensorimotor trans-

form. We utilized the measured fictive behavior to construct

left and right motor regressors and plotted motor tuning maps

showing the anatomical location of all cells with high regression

coefficients for left and right turns (Figures 3A–3C, data for OMR

stimulus blocks shown as example; see Figures S3E–S3H for

other stimuli; see also STAR Methods; Figure S3A–S3D). These
Neuron 100, 1–15, November 21, 2018 3
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Figure 2. Identification of Sensory-Related

Neurons

(A) Stimulus regression using phototactic stimulus

as example. Fish were shown a periodic stimulus

during imaging that consists of leftward and

rightward phototactic stimuli separated by a

whole-field bright background. The stimulus re-

gressors (black) are constructed by convolving a

binary step function with an impulse kernel of

GCaMP6. The colored traces show the DF/F

(mean ± SD for all ROI’s with Pearson’s correlation

coefficient r > 0.5) for a single fish.

(B–E) Average stimulus response maps across

multiple fish for (B) phototactic stimuli (phT), (C)

moving stripes (optomotor response, or OMR), (D)

expanding dots (looming or visual escape

response), and (E) whole-field dark versus bright

(dark-flash response).

(F) Extraction of stimulus-locked component of

neural activity. The stimulus presentation (top) is

periodic. The neural activity (middle) can be aver-

aged over the stimulus period to extract the

stimulus-locked, periodic component (bottom).

(G) Cells can be ranked by the magnitude (percent

of variance explained) of their stimulus-locked

component. Three example cell activity traces are

shown in order of decreasing periodicity during

OMR stimulus presentations

(H–K) Functional cell types for cells tuned to

different stimulus types (arrowheads: see Fig-

ure S2 legend for detailed descriptions). (H) phT,

(I) OMR, (J) looming, (K): dark flash. The cells with

the most highly periodic activity for each stimulus

type were selected and sorted into clusters using

k-means clustering (STAR Methods). Left panels

show average activity for each cluster. Right

panels show anatomical location of cells within

clusters. Scale bars, 50 mm. OTec: optic tectum.

aHB: anterior hindbrain. Cb: cerebellum. pTec:

pretectum. PO: preoptic area. Dien: Dienceph-

alon. Pa: pallium. Hb: habenula.
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Figure 3. Identification of Motor-Related Neurons

(A) Left: anatomical map of all cellular ROI’s with r > 0.5 to either leftward

(red) or rightward (cyan) motor regressors during OMR stimulus blocks

(example fish).

(B) Average motor regression maps for OMR stimulus blocks (n = 11 fish).

Analogous maps for other stimuli shown in Figures S3E–S3H. Inset: activity in

the proximity of the hindbrain spinal projection neurons that control turning

(RoV3, MiV1 and MiV2 neurons); masks from Z-Brain Atlas.

(C) Motor regression: motor regressors (for left, right turns, respectively) were

constructed by convolving the processed fictive swimming traces with an

impulse kernel. Brain activity from all cellular ROI’s is regressed against these

regressors. The dF/F traces show the mean ± SD for all ROIs with r > 0.5 for a

single fish.

(D) Example decomposition of the motor output into stimulus-driven (motor

avg.) and stimulus-independent (motor res.) components.

(E) Dissection of brain-wide motor-related activity. Lower left: Scatterplot of

regression coefficients for all cells with respect tomotor avg. (y axis) andmotor

res. (x axis) regressors for an example fish in relation to the left-side motor

output. Maps were calculated using all stimulus blocks together (similar

analysis for individual stimulus blocks shown in Figure S3M). Top left, purple

box: stimulus-driven motor map showing cells ranking in the top 2% for motor

avg. regression only. Bottom right, green box: independent motor map

showing cells ranking in the top 2% for motor res. regression only. Top right,

blue box: map showing cells ranking in the top 2% for both motor avg. and

motor res. regressions.

(F) Cells ranking in the top 2% for forward swimming (bilateral) regression only

(calculated using all stimulus blocks together). Note the bilateral and dense

cluster of cells at the red arrow locations in rh.5, close to the MiD2 retic-

ulospinal neurons (according to ZBrain). The bilateral swimming regressor is

the average of left and right motor regressors (Figure S3K).

(G) Cells ranking in the top 2% for turning (unilateral) regressions only (calcu-

lated using all stimulus blocks together). The lateral swimming regressors are

the right and left motor regressors minus the bilateral regressor (Figure S3K).

Dotted yellow lines: boundary between rh.2 and rh.3. Note the contralateral

activity (arrowheads). Scale bars, 50 mm. pTec: pretectum. nMLF: nucleus of

the medial longitudinal fasciculus. aHB: anterior hindbrain. pHB: posterior

hindbrain. vSPN: ventral spinal projection neurons. rh: rhombomere. aHB(1-2):

anterior hindbrain rhombomeres 1,2. ARTR: anterior rhombencephalic turning

region. IO: inferior olive.
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maps reveal a dense, lateralized, and highly concerted neural

population in the hindbrain, which is consistent with previous

studies of spontaneous fictive swimming (Dunn et al., 2016b),

and also highlight known motor-related anatomical landmarks

including the spinal projection neurons (e.g., the RoV3, MiV1,

and MiV2 reticulospinal neurons that control turning; see Fig-

ure 3B, upper right inset) (Orger et al., 2008; Randlett et al.,

2015). However, these direct motor regression maps also

show considerable activity in the optic tectum, overlapping

with the corresponding sensory maps (Figures 2C and 2I). This

is because stimulus-evoked behaviors produce a strong correla-

tion between the stimulus and motor regressors, causing a sim-

ple regression analysis to mix up stimulus and motor-related

neuronal activity.

To disentangle stimulus-driven motor activity from indepen-

dent motor activity, we again took advantage of the periodic na-

ture of the experimental stimulus presentations to decompose

the motor outputs into trial average (motor avg.) and residual

(motor res.) components, which represent stimulus-drivenmotor

output and independent motor output, respectively (Figures 3D,

S3I, and S3J; STAR Methods). Regression analysis was then

used to quantify separately how strongly each cell’s activity
Neuron 100, 1–15, November 21, 2018 5
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Figure 4. Multi-Stimulus Integration

(A) Averagemap across fish for the intersection of phototactic responsive cells andOMR responsive cells (top 2%of cells by rank). Multi-stimulus responsive cells

are concentrated in rh.1 and the medial stripes of rh.2.

(B) Whole-brain regressions were performed to a set of regressors that include phT only, OMR only, phT and OMR in the same direction (congruent), and phT and

OMR in opposite directions (incongruent). Cells were classified by their best regressor. Average functional activity of cells associated with each regressor is

plotted (DF/F, mean ± SD).

(C) Multi-stimulus convergence maps for all stimulus pairs (top 5% of cells by rank). Cells are colored based on their direction tuning and congruence. For

directional stimuli (phT, OMR, loom), congruent cells are tuned to both stimuli in the same direction, while incongruent are tuned to opposite directions.

Incongruent cells were labeled according to the direction of the stimulus listed first. For pairs involving the dark flash stimulus, congruent cells were defined as

tuned to whole-field dark (which elicit large angle turns), while incongruent cells were tuned to whole-field bright.

(legend continued on next page)
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was tuned to stimulus-driven or stimulus-independent motor

output. We visualized this analysis by plotting the regression co-

efficients for each cell in a two-dimensional space (Figure 3E,

lower left). To visualize the anatomical organization of different

types of motor activity, we plotted tuning maps for cells that

were highly tuned (top 2% rank) to stimulus-driven motor activ-

ity, stimulus-independent motor activity, or both (Figure 3E,

magenta, green, and blue boxes, respectively; OMR stimulus

shown as example, for other for stimuli see Figure S3M). The

stimulus-independent motor map (Figure 3E, green box) con-

tains neurons almost exclusively posterior to the rhombomere

(rh.) 2/3 boundary in the hindbrain (Figure 3E, dotted line), while

the stimulus-driven motor map (Figure 3E, magenta box) con-

tains cells mostly anterior to the rh. 2/3 boundary, including large

populations of neurons in the pretectum and anterior hindbrain

(rh. 1,2) that overlap with the OMR stimulus map (Figure 2C).

The intersection map (Figure 3E, blue box) is more similar to

the independent motor map (for the thresholds chosen here).

The same analysis performed for other stimulus blocks (photo-

taxis, looming, and dark flash, Figure S3M) reveals that stim-

ulus-independent motor maps are similar across all types of

stimuli, while stimulus-driven motor maps show distinct tuning

patterns. This suggests that the motor-tuned cells posterior to

the rh. 2/3 boundary are dedicated motor centers that are em-

ployed similarly regardless of stimulus type.

We applied a similar analysis to disentangle activity related to

swimming to the right or left (unilateral) from forward swimming

(bilateral), which are convolved in motor output. Specifically,

we averaged the left and right motor outputs to form a bilateral

swimming component, and we subtracted this bilateral compo-

nent from the left and rightmotor outputs to yield unilateral swim-

ming components (Figure S3K). We then plotted tuning maps for

bilateral (Figure 3F) and unilateral (unilateral, Figure 3G) swim-

ming, which uncover more anatomical subtleties. Compared to

previous methods for separating right, left, and forward swim-

ming (Figure S3B) (Ahrens et al., 2013b), this analysis accentu-

ates more clearly the differences in tuning between turns and

forward swimming. The bilateral swimming map features a tight

pair of clusters in rh. 5 near the MiD2 spinal projection neurons

that, to our knowledge, has not been previously characterized.

The unilateral maps highlight the anterior rhombencephalic
(D) Quantification of the number of convergent cells for each stimulus pair. Numbe

stimulus.

(E) Illustration of two alternative hypotheses for convergence of multiple stimulus

visual representations (e.g., phT, OMR) directly feeds into premotor systems, wh

different visual representations first feed into a behavior-centric visual represen

model, with the anterior hindbrain containing the behavior-centric, convergent v

(F) Distribution of convergence cells for different brain regions along the anterior-

for all stimulus pairs. Significant numbers of convergent cells are found in the dienc

phT-OMR and OMR-DF stimulus pairs, the average density of convergent cells i

(G) Scatterplot of convergent activity in a 2-dimensional sensory-motor space (S

top 5% of cells ranked by phT and OMR regression. Blue points: top cells ranked

ranked by motor component (same number of cells as red). Top and right: histog

cells (red) to the most motor or sensory-related cells, respectively.

(H) Cellular activity for 3 example neurons shown in (G) during phT and OMR stim

(I) Average anatomical maps (n = 11 fish) showing location of the cells represented

map, blue) andmotor-related cells (middle map, green), andmerge (right map, ove

overlap in the anterior hindbrain (appears purple). Boundaries for rh.1, rh.2, and
turning region (ARTR, also know as the hindbrain oscillator,

HBO, which has shown to mediate turning biases; Dunn et al.,

2016b), along with correlated cells in ventrally extending col-

umns in rh. 5/6 and the inferior olive. These maps also reveal a

smaller population of cells in rh. 1/2 correlated to the contralat-

eral ARTR clusters (see also Figure S3L).

Multi-Stimulus Convergence
Having mapped cells active at the ‘‘beginning’’ and ‘‘end’’ of

the sensorimotor transformation, we turn our attention to the

transformation itself—specifically, the question of how distinct

sensory pathways eventually converge onto common motor

outputs. First, we identified convergent cells that respond to

multiple stimuli. For example, to produce a convergence map

between phT and OMR stimuli, we selected cells that ranked

highly on both phT and OMR stimulus tuning maps (Figures 4A

and 4B; see STAR Methods and Figures S4A and S4B). We

found that phT-OMR convergent cells were concentrated in

the anterior hindbrain (aHB), specifically in rh.1 and the medial

area of rh.2. Interestingly, a small number of cells were tuned

to phT and OMR in opposite directions, so we classified cells

as responsive to either to phT-only, OMR-only, both phT and

OMR in the same directions (‘‘congruent’’), or both in opposite

directions (‘‘incongruent’’) (Figures 4B and S4D). To identify

convergent cells across all stimulus types, we performed a

similar analysis for every pairwise combination of stimuli (Figures

4C and S4E, see legend for definition of congruent and incon-

gruent in each case) and calculated the proportion of convergent

cells (Figures 4D and S4C). We observed that phT and OMR

share the most convergent cells, while looming shares the few-

est convergent cells with all other pathways. This may be reflec-

tive of the fact that phototactic (and potentially also OMR) stimuli

elicit navigational or exploratory swimming (Chen and Engert,

2014), while looming stimuli evoke escape responses. For all

simulus pairs, convergent cells were found mostly in the

midbrain (mostly pretectum and optic tectum) and anterior hind-

brain, and congruent convergent cells significantly outnumber

incongruent (Figure S4C). Within the pretectum and optic

tectum, areas known to process visual stimuli, it is not surprising

that many cells exhibit convergent tuning to multiple stimuli,

especially because the stimuli themselves share overlapping
r and shading indicate proportion of cells that are highly tuned (top 5%) to either

pathways. Left, direct motor convergence: information from non-overlapping

ich then compete to produce different behaviors. Right, sensory convergence:

tation before affecting motor circuits. The present results support the second

isual representations.

posterior axis. Percentages are normalized to all convergence cells and shown

ephalon, midbrain, and anterior hindbrain rhomobomeres 1 and 2 (aH[1-2]). For

s highest in rh.1. Telen: telencephalon.

TAR Methods). Red points: convergent cells, defined as the intersection of the

by sensory component (same number of points as red). Green points: top cells

rams of motor and sensory components, comparing distribution of convergent

ulus blocks.

in (E): top-ranking convergent cells (left map, red), sensory-related cells (middle

rlap between sensory-related and convergent appears purple. Note significant

rh.3 are overlaid. Scale bars, 50 mm.
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visual features. However, the high density of convergent cells in

the anterior hindbrain (Figure 4F), specifically restricted to rhom-

bomeres 1 and 2 (henceforth abbreviated aHB[1-2]), is sugges-

tive of a specific role for this brain area in transforming sensory

input into behavior. This areamay be homologous to a subregion

of the mammalian pons (Kandel et al., 2000).

In addition to where different sensory pathways merge into

similar behaviors, we are also interested in how such integration

is achieved. Specifically, we tested two different models of

multi-stimulus convergence: a direct motor convergence model,

in which the first convergent cells are part of the motor system

(Figure 4E, left), and a sensory convergence model, in which the

first convergent cells are distinct from and upstream of the mo-

tor system (Figure 4E, right). Although the sensory convergence

model is more complex, it may allow for more flexible computa-

tions—for example, convergent cells may be inhibited by more

urgent motor commands or otherwise modulated without

affecting core motor circuits. A key difference between these

models is that the sensory convergence model predicts a pop-

ulation of convergent neurons whose activity does not closely

follow the motor output. To test which model of convergence

more accurately describes sensorimotor transformations in

the larval zebrafish brain, we plotted the activity of highly

convergent cells (top 5%) in a two-dimensional sensory-motor

space (Figure 4G, red dots, phT/OMR convergence shown as

example, see STAR Methods), and compared them to the

most sensory-related (blue) and most motor-related (green)

cells. We observed that the convergent cells have activity that

is highly sensory-related but only weakly motor-related (Fig-

ure 4H). Indeed, this observation was consistent across multiple

fish for both leftward and rightward stimuli (Figures S4E, S4G,

and S4I), suggesting that most convergent cells convey sensory

information. We also compared the anatomical distribution of

convergent cells to the most sensory and motor-related cells

(Figure 4I, see also Figure S4H), which revealed prominent over-

lap between convergent cells and the most sensory-related

cells in aHB(1-2).

Taken together, these results demonstrate the presence of

sensory convergence neurons concentrated in the aHB(1-2)

brain region. We hypothesize that sensory convergence neurons

in aHB(1-2) play a critical role in sensorimotor transformations,

processing sensory signals from the midbrain into turning biases

that instruct dedicated motor regions in the more posterior hind-

brain segments. The anatomical location of the sensory conver-

gence cells, bordering the tectum, cerebellum, and motor nuclei

such as the ARTR (Dunn et al., 2016b), makes it well suited to

form synaptic connections with both dedicated sensory andmo-

tor regions. As a preliminary test of the causal role that these sen-

sory convergence neurons play in biasing behavioral output, we

performed optogenetic stimulation of cells in the aHB(1-2) while

measuring fictive output in fish expressing the opsin CoChR (Kla-

poetke et al., 2014) under the elavl3 promoter (Figures S4J–

S4M). Consistent with the sensory convergence model, we

found that stimulating one side of the aHB(1-2) increased turning

to the ipsilateral direction, but did not increase overall swim

frequency. While additional experiments targeting functionally

identified subpopulations will be required to understand in

more detail the role played by this sensory convergence area,
8 Neuron 100, 1–15, November 21, 2018
our whole-brain imaging experiments have constrained possible

circuit models and can precisely guide future investigations.

Whole-Brain Functional Clustering
Although sensorimotor systems are central for understanding

the functional organization of the brain, many neurons in the

brain exhibit coherent activity that is not strongly related to either

the experimental stimuli or measured motor outputs; further-

more, meaningful activity correlations between neurons are pre-

sent even in the absence of stimuli (spontaneous activity). To

address these limitations of our methodology and to catalog

broader, brain-wide activity patterns, we developed an unsuper-

vised, density-based, agglomerative clustering algorithm that

groups neurons into functional clusters based on their activity

alone (regardless of their anatomical location) (Figures 5A and

5B; see also STAR Methods and Figure S5A). Applying the clus-

tering algorithm to the full datasets (all stimulus blocks) gener-

ated �100–150 functional clusters for each fish, and each major

brain area contained at least a few clusters (Figure 5B). Identified

clusters included not only cells tuned to stimulus or motor activ-

ity, but also cells uncorrelated to both (Figures 5C, 5D, S5J, and

S5K; STAR Methods). We found that the number of cells

included in each cluster spanned three orders of magnitude,

but activity within each cluster was nevertheless highly

concerted (Figures 5E and 5F; examples in Figure 5A). Many of

the clusters also exhibited substantial correlations with other

clusters (Figure 5G), so we performed hierarchical ordering of

the cluster centers to visualize the relationships between clus-

ters (Figures S5B and S5F). The blocks or branches of this hier-

archy can reveal additional functional organization on broader

scales; for example, a prominent group of related clusters all

consist of neurons in the olfactory bulb (Figure 5G, red block;

see also Figure S6F).

Unsupervised clustering faces the challenge of the lack of

ground truth for validating the derived clustering structure. To

address this, we first examined our clustering result using

t-SNE (Van Der Maaten and Hinton, 2008), a visualization

method for high-dimensional data in which the functional activity

of each cell is represented by a point in 2 dimensions and local

proximity of points reflects functional similarity between cells

(Figure 5H). In the t-SNE plots, functional clusters identified by

our clusteringmethod appeared as isolated islands in the periph-

ery (dots colored according to cluster membership), while un-

clustered cells (i.e., with noisy or idiosyncratic activity below

the density threshold) congregated in the center (gray dots).

This suggests that our clustering results and the choice of clus-

tering threshold are generally appropriate. To more systemati-

cally evaluate the clustering results, we performed a two-fold

cross-validation analysis, and we found that 76% of neurons

are consistently clustered from both halves of the time-series

data (Figure 5I, top left; for details see STAR Methods and Fig-

ures S5E and S5N). Interestingly, the ARTR, which has been

shown to modulate exploratory swimming in the absence of

stimuli (Dunn et al., 2016b), is more prominentently clustered

during spontaneous conditions than under stimulus-driven con-

ditions (Figure 5J compared to Figure S5O). We utilized a similar

cross-validation approach to investigate how clustering varies

across stimulus types, quantifying what percent of neurons
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retain the same cluster membership for different stimulus blocks

(Figure 5I; see also Figure S5P). We found that phT and OMR

produce the most similar clusterings, while looming clusters

are themost distinct fromother stimuli, consistent with the earlier

observations (see Figure 4D). Intruigingly, clustering obtained

from the spontaneous periods (no stimulus presented) matched

significantly (R50%) with the phT, OMR, and DF conditions. This

suggests that about half of the functional clusters can be reliably

detected in diverse stimulus contexts (including no stimulus),

and perhaps reflects the role that underlying anatomical connec-

tivity plays in shaping functional activity.

Since the functional clustering uses no anatomical knowledge

as input, emergent anatomical patterns in the clusters can reveal

relationships between brain-wide structure and function. We

observed that most clusters are anatomically compact rather

than dispersed (Figure 5K and Figure S5C), suggesting that func-

tionally related neurons are often organized into small brain

nuclei (Figure 5l). However, the spatial extent of clusters varies

significantly, including prominent examples of dispersed clus-

ters that are spatially intermingledwith other clusters (Figure 5M).

One might expect that many clusters would appear in similar

anatomical locations across different individual animals, but it

is also possible that some functional clusters are absent or

appear at different locations in different animals. To investigate

this, we screened for clusters that have a similar anatomical

counterpart in several individual fish and found that about half

of all clusters are anatomically conserved (Figure S5H; see
Figure 5. Whole-Brain Functional Clustering

(A) A diverse collection of automatically identified functional clusters from one ex

together. After whole-brain clustering, the most dissimilar clusters were selecte

profiles: normalized DF/F for each cell is plotted along the horizontal axis. a2, co

(B) Full set of individual clusters as z-projections (from the same fish). All cluster

(C) Clusters for an example fish ranked from stimulus related (periodic, as in Fig.

(D) Clusters for an example fish ranked from motor related (high regression coe

coefficient, purple).

(E) Histogram of size distribution of all clusters pooled across fish (mean ± SEM)

(F) Histogram of average correlation between cells within clusters pooled across

(G) Correlation matrix of all clusters from a single fish, ordered so that most sim

olfactory bulb neurons (see Figure S6F).

(H) Visualization of all clusters within one fish with t-SNE. For color assignment, th

adjacent shades of hsv colors are assigned based on the resulting leaf order. Gra

assigned to any cluster (1:10 down-sampled for clarity).

(I) 2-fold cross-validation (as in Figure S5E) between multiple sets of stimuli with

clusters over the total number of cells. Each fish in the analysis has been presente

five stimulus periods.

(J) Results of the automatic clustering algorithm applied to only the ‘‘spontaneous

the 2-fold cross-validation test are shown.

(K) Histogram of average within-cluster anatomical distance pooled across fish (

(L) Examples of clusters that are anatomically isolated.

(M) Examples of anatomically dispersed clusters that are difficult to identify base

(N) Averagemap of clusters conserved in anatomical space. Each of these clusters

fish (out of 18 fish, see STAR Methods). Clusters are ranked and colored within fi

(O) Putative abducens nucleus (ABD) network for the control of eye-movemen

respectively. Arrowheads: oculomotor nucleus (OCM) clusters.

(P) Illustration of the eye-control circuit. Red or blue indicates control of rightwar

(Q and R) Two-dimensional sensory versus eye-movement mapping (similar to Fig

regressors instead of the tail-movement motor output). (Q) Analysis of the sens

component (square root of variance explained by periodic component of activity);

res., as in Fig. 3D); Top 1,000 motor-ranked cells are plotted in colors, corresp

corresponding figures for right motor res. Scale bars, 50 mm. Dien: Diencephalon

cranial nerve X. ARTR: anterior rhombencephalic turning region. pTec: pretectum
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STAR Methods and Figure S5F for criteria). An anatomical map

of these conserved clusters (Figure 5N) shows that conserved

activity is found most densely in the anterior hindbrain and fore-

brain but is conspicuously absent in the optic tectum, consistent

with previous observations that stereotypy in the tectum is low

(Portugues et al., 2014; Randlett et al., 2015; Romano et al.,

2015). The functional clusters identified here can, in some cases,

be confidently mapped to homologous mammalian brain areas

(e.g., the clusters in the abducens, inferior olive); in other cases

(e.g., aHB, ARTR) no direct homologs are known, but clusters

can be roughlymapped to larger brain regions based on anatom-

ical landmarks (such as rhombomeric position). More detailed

homology may soon be obtained via brain atlases, which

continue to be developed and updated (Marquart et al., 2015;

Randlett et al., 2015; Ronneberger et al., 2012).

Taken together, the functional and anatomical features of the

clusters can give insight into the underlying neural circuits. To

further investigate circuits of interest, regression and clustering

approaches can be flexibly and interactively combined with

anatomical knowledge to produce circuit hypotheses (Fig-

ure S6A). Indeed, we identified a rich variety of circuits, which

are discussed in the supplemental text accompanying Figure S6,

including a jaw and gill movement control circuit (Figure S6B), a

mesencephalic locomotion-related region (Figure S6C), the

raphe nucleus and the vagus cranial system (Figures S6D and

S6E), the olfactory bulb (Figure S6F), and an eye-movement con-

trol circuit (Figures 5O, 5Q, 5R, and S6G–S6K). These circuits are
ample fish. Clustering was performed on activity data from all stimulus blocks

d based on their hierarchical ranking for visualization. a1, functional activity

rresponding anatomical map.

s are shown in batches of 6 on duplicate z-projections for clarity.
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.

fish (mean ± SEM).

ilar clusters are adjacent. Submatrix indicated by red bars highlights putative

e total of 139 clusters (6,499 cells) were ordered by hierarchical clustering, and

y points represent cells that did not pass the clustering criterion, i.e., were not

in each fish (n = 6 fish), with scores indicating the fraction of cells in matched

d with all 5 different stimuli. The ‘‘all’’ category uses the combined data from all

’’ condition (no stimulus presented) for an example fish. Only cells that passed

mean ± SEM).

d on anatomical location, as they are intermixed with other clusters.

was selected for having anatomically corresponding clusters in at least 6 other

sh as in (D).
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ure 3F, except the average response of the ABD were used as eye-movement

ory and eye-movement activity of one example fish. Horizontal axis: stimulus
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included as interesting examples but are by no means an

exhaustive list of what can be identified in our data. To compre-

hensively mine this data for functional circuits, we encourage

readers to continue to explore the data further on their own uti-

lizing our open-source code (Data and Software Availability,

STAR Methods).

As a verification of this exploratory approach, here we briefly

describe characterization of an eye movement control circuit.

Two pairs of anatomically compact clusters in the ventral hind-

brain in rh.5 and rh.6 consistently appear in the whole-brain

clustering (Figure 5O, arrows), standing out because their

within-cluster activity is highly correlated (many correlations

exceed 0.8; see Figure S6K) but not similar to either the stimulus

or the fictive swimming behavior (Figures S6H–S6J). The

anatomical location of these clusters matches the abducens

nuclei (ABD), which contains motor neurons responsible for

generating coordinated eye movements (Cabrera et al., 1992;

Gestrin and Sterling, 1977). We also observe a pair of small clus-

ters near the anterior border of the hindbrain that are tightly

correlated to contralateral ABD clusters, which we identified as

the oculomotor nuclei (OCM) (Figure 5O, arrowheads) (Higashi-

jima et al., 2000). To characterize the functional organization of

this circuit in more detail, we mapped cells with OCM-related

activity in a sensory versus eye-movement space, along with

their anatomical locations (Figures 5Q and 5R; see also Fig-

ure S6G and STAR Methods). In addition to the OCM and ABD

clusters, we observe clusters of cells in the more dorsal hind-

brain with more sensory-related activity (Figure 4R, circled).

We speculate that these neurons could be responsible for the

integration of sensory inputs into the eye-movement control cir-

cuit (Figure 5P). Using a combination of regression and clus-

tering analyses on whole-brain activity data, we have been

able to verify a circuit for which we have neither the motor output

(eye-tracking) nor a robust stimulus drive (stimuli used here do

not strongly drive eye movement). Used in this way, whole-brain

clustering can serve as a cellular-resolution screen to direct

further investigations into specific neural circuits.

DISCUSSION

In this study, we generated a multi-animal, whole-brain, cellular-

resolution dataset incorporating multiple stimulus paradigms

and fictive motor output, and we developed extensive analyses

aimed at understanding the functional organization of the larval

zebrafish brain. Previous studies have characterized functional

activity related to specific stimuli—e.g., phototaxis, OMR, loom-

ing, dark flash, and spontaneous behavior—but have not exam-

ined the relationships between different stimulus processing

pathways. Simply comparing across different experiments

cannot distinguish convergent cells (single neurons that respond

tomultiple stimuli) from amixture of unimodal cells in close prox-

imity, but by combining multiple stimuli in the same experiments,

we have been able to unambiguously identify convergent cells.

We discovered that rhomomeres 1 and 2 of the anterior hindbrain

(aHB[1-2]) contain cells with convergent activity for a large vari-

ety of stimuli, suggesting that this anatomical region plays a key

role in diverse sensorimotor contexts. Furthermore, we found

that many of these convergent cells were primarily tuned to
behaviorally relevant sensory signals rather than motor activity.

For example, right-preferring sensory convergence cells were

active during rightward phT and OMR stimuli, even when the

fish did not actually turn right. We interpret this to mean that

these sensory convergence cells generalize stimuli into cate-

gories based on whether the stimulus biases the fish to turn

left or right to inform, but not directly generate, turning behavior.

To avoid oversimplication of the role sensory convergence

cells play in sensorimotor transformations, we should also

consider several caveats. Conceptually, we have drawn a

distinction between the direct motor convergence and conver-

gent sensory models, but it is important to realize that cellular

responses in the hindbrain form a continuum between purely

sensory and purely motor-related activity. By identifying sensory

convergence cells, we have not ruled out parallel, direct motor

convergence pathways. In fact, it is likely that such pathways

exist, especially for looming escape responses, which have

been shown to activate the Mauthner system (Dunn et al.,

2016a). There are also subtle differences in the anatomical orga-

nization of convergence across stimulus types, indicating that

aHB(1-2) may be composed of several subcircuits performing

overlapping but distinct functions. Most notably, looming re-

sponses tend to recruit cells in the more lateral stripes, which

are likely mediated by different neurotransmitter types from the

medial stripes (Kinkhabwala et al., 2011), and cells mediating

bright and dark-field responses appear to form distinguishable

subclusters along the anterior-posterior axis.

Sensorimotor transformations are known to depend on feed-

back pathways related to corollary discharge (Crapse and Som-

mer, 2008). However, in our data, we cannot easily determine the

direction of information flow because the temporal resolution of

our data is limited by sampling rate (2 to 3 Hz), and we do not

know the underlying structural connectivity. Nevertheless, by uti-

lizing optogenetics (Figures S4J–S4M), we have shown that

aHB(1-2) causally biases turning directions. Further investiga-

tions of these sensorimotor transformations on the circuit level

would benefit from finely controlled (e.g., functionally defined

single cells) perturbation experiments, high-framerate neural ac-

tivity recordings using voltage indicators (Piatkevich et al., 2018),

and large-scale electron-microscopy analysis of structural con-

nectivity (Hildebrand et al., 2017; Vishwanathan et al., 2017).

While our fictive motor recordings have provided a critical

handle on behavioral output, they cannot fully capture the

behavioral repertoire of the animals, because (1) fictive record-

ings are low-dimensional representations of behavior and do

not convey, e.g., eye movement, (2) fish may behave differently

in tethered and free-swimming contexts, and (3) behavioral re-

sponses are often variable from trial to trial and across animals.

While we are able to decode turning directions, it is difficult in

fictive preparations to reliably elicit or detect sophisticated tail ki-

nematics. Furthermore, in motor regression analyses, we often

obtained better results if we defined the motor outputs (left

and right) as the activity of selected motor neurons (‘‘motor

seed’’) rather than using the fictive swims themselves (Methods;

Figures S3C and S3D). The difference may reflect physiological

differences between calcium measurements of cellular activity

of motor neurons and extracellular voltages in the tail, or it could

be due to imperfect recording or decoding of fictive swims.
Neuron 100, 1–15, November 21, 2018 11
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Although all stimuli we analyzed elicited motor responses, the

behavioral output was in general quite variable, which is consis-

tent with previous studies in both fictive and free-swimming con-

texts (Bianco et al., 2011; Trivedi and Bollmann, 2013) (although

behavioral responses in tethered preparations tend to be less

robust). In our analysis, behavioral variability was actually a key

asset, allowing us to differentiate independent motor activity

from sensory-driven motor activity (Renart and Machens,

2014). Although we observed cells that were tuned only to sen-

sory signals, we did not observe any particular brain regions

exclusively correlated to motor variability (motor res., as in Fig-

ures 3D and 3E). This suggests that motor variability is not gener-

ated in well-defined anatomical nuclei but may instead arise in a

distributed fashion, perhaps originating as small perturbations

that are amplified by distributed neural circuitry.

The sensory convergence cells in aHB(1-2) likely play a

different role than the ARTR, which has also been implicated

to contain an intermediate representation for behavior but rep-

resents behavior more directly (Dunn et al., 2016b; Wolf et al.,

2017). Our interpretation is that the ARTR is an internal gener-

ator of turning biases for future swims and is most influential in

the absence of stimuli, whereas the aHB(1-2) specifically pro-

cesses stimuli to generate turn biases. It is likely that the

aHB(1-2) and ARTR are interconnected, given their anatomical

proximity and overlapping roles in sensorimotor processing.

Based on our observations in aHB(1-2), it is reasonable to hy-

pothesize that sensory convergence cells also form a crucial

site for integrating multiple simultaneously presented stimuli.

In cases where competing sensory stimuli are presented,

convergent sensory activity may critically inform behavioral

choice. Although our results based on serially presented stimuli

do not directly address this hypothesis, they nevertheless sug-

gest that the sensory convergent cells in the aHB(1-2) may play

a critical role in transforming competing stimuli into behavioral

choice.

To extend our analysis beyond sensorimotor processing, we

used functional clustering to identify concerted activity that is

not strongly correlated to either sensory or motor events.

Although clustering cells based on functional activity has previ-

ously been employed in many different contexts, we found that

tailoring the algorithm to the particular characteristics of

whole-brain calcium imaging data was necessary to achieve

satisfactory results. Our clustering algorithm is a variation of

agglomerative clustering with additional specific features that

promote robustness to noise and high computational efficiency.

The algorithm has a tunable threshold regulating how correlated

the activity of cells within the same cluster should be (STAR

Methods). The value of the threshold affects the clustering as fol-

lows: as the threshold is increased, the activity of cells within

clusters becomes more similar and the clusters become more

robust to a cross-validation test (Figures S5D and S5E), but

fewer cells are included in clusters and the number of clusters

is reduced. As the threshold is decreased, more cells are

included in clusters, but some anatomically distinct clusters

merge together into larger, more loosely associated groups of

cells. For the presented analysis, we have empirically chosen a

threshold (0.7) that balances this tradeoff; however, this choice

of threshold is not obviously superior to other values. Moreover,
12 Neuron 100, 1–15, November 21, 2018
we believe that the clustering algorithm is most powerful when

applied in an exploratory, interactive manner. Rather than pre-

senting exhaustive results by varying clustering threshold and

other parameters, we instead encourage interested readers to

explore the data themselves using our open-sourced code and

datasets (see Data and Software Availability in the STAR

Methods).

In addition to identifying specific clusters, we observe three

broad characteristics of the functional organization of the larval

zebrafish brain in the whole-brain clustering results. First, a sig-

nificant percentage of neurons do not correlate strongly to any

clusters (those are the unclustered neurons in Figure 5H; see

also Figure S5D), as has also been observed in other neural

systems (Okun et al., 2015). On the other hand, many thou-

sands of cells in the motor system exhibit hightly correlated ac-

tivity, and it is not clear why some clusters contain so many

cells while other cells have very unique activity patterns.

Some of the functionally isolated neurons may be still be devel-

opmentally immature (Boulanger-Weill et al., 2017), as they are

especially common in areas where neurons are added to the

rapidly developing brain (Figure S2L). Others may be computa-

tionally important despite remaining unidentified by clustering,

and understanding their functional roles may require more

complex analysis or perturbation experiments. Highly corre-

lated activity may differentiate further in adult fish to allow for

more nuanced motor control. Of course, it is likely that uncor-

related activity is present on timescales that are not discernable

with calcium imaging.

Second, functional activity among different clusters varies

gradually, and most clusters exhibit significant correlations

with other clusters (Figure 5G). Moreover, most characteristics

of the clustering, including number of clusters, cross-validation

score, and total number of cells included in clusters, vary contin-

uously with the clustering threshold (Figure S5D). This suggests

that the functional relationship between clusters depends on the

chosen correlation scale and that there is no clear correlation

scale where brain-wide organization is most evident. As a result,

the relationships between functional clusters are complex and

likely best described hierarchically (Figure S5F).

Third, the extent to which functional clusters are anatomically

conserved varies across brain regions (Figure S5H); this is

consistent with previous observations of the positioning of

transgenic labels (Randlett et al., 2015). It still remains to be

determined what factors are responsible for this observed ste-

reotypy and/or variability of the functional organization. A

possible hypothesis is that some, but not all, regions of the

brain are self-organized through experience-dependent plas-

ticity, which may lead to across-animal variability on smaller

anatomical scales.

We have shown that in-depth explorations of functional,

whole-brain activity data can generate strong hypotheses about

sensorimotor processing and the broader functional organization

of the brain. It is worth noting that the fast nature of light-sheet im-

aging is crucial for both dissection of sensorimotor processing

and brain-wide functional clustering. Indeed, the residual

(non-trial-averaged) activity of cells can only meaningfully be

compared if activity of all cells is recorded nearly simultaneously,

and functional clustering requires concurrent observations of
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neuron groups in faraway brain regions. The analytical methods

presented here are also more generally applicable to other

large-scale, high-resolution functional datasets. We have made

our software platform and data openly available to facilitate

further analysis and adaptation of this platform for other experi-

mental studies. The analysis of the functional organization of

brain-wide circuits is complementary to techniques of molecular

phenotyping (Lovett-Barron et al., 2017), optical manipulation,

electrophysiology, viral tracing, and connectomics and, in com-

bination with these techniques, offers the potential to advance

our mechanistic understanding of brain function.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

Alpha-Bungarotoxin Sigma-Aldrich B137

Deposited Data

Functional data (calcium traces of all ROI’s with metadata)

from all n = 18 fish, formatted for the GUI

This study https://www.github.com/xiuyechen/fishexplorer

Experimental Models: Organisms/Strains

Tg(elavl3:H2B-GCaMP6f) (Vladimirov et al., 2014) N/A

Tg(elavl3:CoChR-eGFP) (Klapoetke et al., 2014) N/A

Software and Algorithms

MATLAB (Behavioral and imaging analysis, modeling) MathWorks https://www.mathworks.com/products/matlab.html

C# (.NET Framework 3.5) (stimulus/behavior) Microsoft https://docs.microsoft.com/en-us/dotnet/csharp/

Computational Morphometry Toolkit (CMTK) NITRC https://www.nitrc.org/projects/cmtk

Custom GUI ‘‘FishExplorer’’ This study https://www.github.com/xiuyechen/fishexplorer

Cell detection (Kawashima et al., 2016) N/A
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Xiuye

Chen (xiuyechen@gmail.com).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Transgenic zebrafish, panneuronally expressing calcium indicator GCaMP6 under the elavl3 promoter and nucleus-targeted as Tg(e-

lavl3:H2B-GCaMP6f), was used for imaging (Vladimirov et al., 2014). Transgenic larval zebrafish (5 - 7 dpf) expressing CoChR-eGFP

(Klapoetke et al., 2014) under the elavl3 promoter were used for optogenetic stimulation. Zebrafish larvae (5 dpf – 7 dpf), were

paralyzed with 1mg/mL alpha-bungarotoxin (Sigma-Aldrich), and embedded with 2% low melting point agarose. [Sex cannot be

determined before�3 weeks post fertilization (http://jeb.biologists.org/content/205/6/711)]. ZebrafishR 7dpf are cared for in accor-

dance with an automatic fish housing system at 28�C under Janelia Research Campus Policy ‘‘Guidelines for the Use of Zebrafish in

Research.’’ Zebrafish % 7dpf are kept in an incubator at 28�C. Zebrafish between 5 and 7 dpf are fed Rotifers. All experiments pre-

sented in this study were conducted in accordance with the animal research guidelines from the National Institutes of Health and

were approved by the Institutional Animal Care and Use Committee and Institutional Biosafety Committee of Janelia Research

Campus.

METHOD DETAILS

Light-sheet imaging
Light-sheet imaging experiments were performed with an experimental setup previously described (Vladimirov et al., 2014), which

achieves almost whole-brain imaging with concurrent presentation of visual stimuli and electrical recordings of fictive swimming.

The imaging rate was about 2 brain volumes/s (2.11 ± 0.26 Hz), with the variability due to differences in the size of the brain for

different animals (mainly because of the thickness difference). Each experiment lasted between 30 and 120 min.

Cell detection
After imaging acquisition, the time series of each plane was registered by custom-written C/CUDA software for the XY plane

translation. Z-drift was corrected by first comparing patches of images with the nearby planes from the first 2 min of the recording,

and then calculated by linear fitting the distance across the Z-planes. Only the parts of experiment when the XY- or Z-drift smaller

than 1 um was used for further analysis.
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Cells were detected from the time-averaged image. In the Tg(elavl3:H2B-GCaMP6f) line, calcium indicator was mainly localized in

the nucleus and forms a bright disk on each plane, a property that facilitates neuron detection. First, GCaMP expression area was

extracted by binary thresholding based on pixel intensity and local contrast. Second, each pixel was normalized locally by assigning a

relative rank of intensity within a disk patch (radius = 4 mm), then further smoothed by a circular patch with radius of 1.6 mm. The center

of a cell body was identified as being a local maximum point, and the calcium trace for the cell was calculated as the average over

circular patch with radius 2.8 mm (Kawashima et al., 2016). The DF/F traces of identified cells are then standardized as z-scores to

have zero mean and unit variance (and thus have arbitrary unit).

Fictive behavior recording
The fictive behavior setup has been previously described (Dunn et al., 2016b). Two suction glass pipettes (�45 mm inner diameter)

were attached on the skin from each side of the tail. Gentle suction was applied to help the electrical contact with the motor

neuron axons. These electrodes record spiking from multiple motor neuron axons, providing readout of intended locomotion

(Ahrens et al., 2012; Dunn et al., 2016b; Masino and Fetcho, 2005). Extracellular signals were amplified (Molecular Devices,

Axon Multiclamp 700B), fed into a computer using a National Instruments data acquisition card, and recorded by custom written

C# software.

The fictive swim bouts were first detected as previously described (Ahrens et al., 2012, 2013a), then used to decode fictive turns

(Dunn et al., 2016b). The extracellular signal from left and right side of the tail were recorded from two independent channels of the

amplifier. The fictive swim signals were calculated as the smoothed power of the deviation from baseline. Individual swim bouts were

detected automatically, and then a weighted average swim bout amplitude was used to normalize and balance the signal from

left and right channel. Each swim bout was weighted by a normalized rising exponential function, to take into account the fact

that turns affect the start of swim bouts more heavily than the end of swim bouts. For the same reason, to determine the fictive

turn amplitude and distance, filtered and normalized fictive signals during swim bouts were weighted with a decaying exponential

function (tau = [bout duration]/3) to emphasize the initial burst that determines overall turn direction. Then the turn amplitude was

calculated by the difference of weighted power divided by the sum of the weighted power from both sides: (PowerLeft - PowerRight) /

(PowerLeft + PowerRight). The sum of the weighted power was used to measure the swim distance.

Visual stimulation
Visual stimulation patterns were generated by custom-written C# software, delivered by a projector with homogeneous red light,

and projected to a diffuser that was stuck to the bottom of the imaging chamber. The visual stimulation consisted of serial rep-

etitions of different sets of patterns: For phototaxis, two patterns were presented: Left-Dark / Right-Bright, and Left-Bright / Right-

Dark. After each pattern a period of whole field dark was presented. The dark area slightly crossed the midline in order to motivate

the fish to swim toward the bright side. For moving grating stimulation, three or four directional drifting gratings were presented:

forward, backward, left-ward, and right-ward. Forward and backward gratings moved along the body axis toward the head or the

tail direction. Left- and right-ward gratings were oriented 120 degrees away from the head direction, either to the left or the right

side. Grating speeds were as follows: Leftward, rightward, backward: 0.4mm/sec, Forward: 1 mm/sec. For spontaneous stimu-

lation, the whole field was dark and no other visual feature was presented. For dark flash stimulation, whole field dark and whole

field light were presented alternatingly for 20 s each. For looming stimulation, a bright background was presented, and a dot was

expanded on either left or right side of the fish. Expansion lasted for 5 s, and was followed by 25 s of whole field bright.

Image registration
Nonrigid image registration was done with CMTK (https://www.nitrc.org/projects/cmtk/), similar to registration done for the Z-Brain

atlas (Randlett et al., 2015). Additionally, one ‘‘bridge brain’’ was created by imaging the same fish both with the light-sheet micro-

scope (used for the functional dataset in this study) and a confocal microscope (used for the creation of the Z-Brain atlas). Functional

light-sheet datasets were first registered to the bridge brain, and the transformations from light-sheet to confocal for this bridge brain

were subsequently applied to complete the registration. To obtain the anatomical location of individual cell-ROI’s in the transformed

coordinates, we used the CMTK built-in command ‘‘streamxform.’’

MATLAB GUI
A graphical user interface (GUI) was written in MATLAB� for interactive data visualization and analysis. For each fish, the functional

data loaded consisted of one calcium trace per each segmented cell, calculated as change in fluorescence (DF/F). Also loaded were

the annotated stimuli, fictive behavior, anatomical location of segmented cells (both raw and registered), anatomy stacks, and an-

notated Z-Brain masks. The GUI integrates most analyses used in this study, including but not limited to manual cluster selection,

selection based on anatomy, set operations, regression methods, unsupervised clustering methods, storage of clusters, integration

with the Z-Brain atlas, and various visualization and export options. The software was written and tested with MATLAB 2016a and

running on Windows 7.
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Automated functional clustering algorithm
This algorithmwas custom developed to suit this dataset, and the code is available as part of the GUI.We outline the algorithm below:

1. Divide all cells into ‘‘functional voxels’’ (�10 cells each)
a. Perform k-means clustering on all cells (k = 20)

b. Perform k-means clustering on outputs of (a) (k = �400)

c. Discard any cells whose correlation with the voxel average activity is less than $THRESH

d. Discard any voxels with fewer than 5 cells

2. Merge voxels into clusters based on density in functional space

a. for each pair of voxels ij (starting from most correlated):

if the correlation between voxel i and j is greater than $THRESH,

and thecorrelationbetween the the voxel j and thecentroid (average) of the cluster containing voxel i is greater than$THRESH:

then group voxel j in the same cluster as i.

b. discard any clusters with fewer than 10 cells

3. Clean up clusters using regression to cluster centroids

a. for each cell k:

if the correlation to the closest cluster’s centroid is greater than $THRESH:

include cell k in that cluster

b. Discard any clusters with fewer than 10 cells

4. Iterate merge and cleanup steps

a. Perform step 2 and 3 once more, using clusters as input voxels

This clustering algorithm can either be applied to all cells in the brain or a chosen subset of interest, and the correlation threshold

determining clustering stringency ($THRESH) can be adjusted to trade-off completeness and accuracy (see Results and Figure S5D).

For most analysis in the text, the value of $THRESH was 0.7.A whole-brain single-cell resolution data (�100,000 cells, �5000 time

frames) can be clustered on a standard desktop computer on the timescale of minutes. The algorithm is sensitive enough to detect

even very weak functional clustering patterns in the data, including artifactual signals resulting from the scanning laser itself (Fig-

ure S5I, these artifactual clusters were thereafter excluded from analysis).

Clustering cross-validation
We divided the data into two halves along the time dimension; where multiple stimulus repetitions were present, we used an equal

number of repetitions for the two halves. We then use the Hungarian method (Munkres assignment algorithm) to match clusters pro-

duced from the two halves of the data based on the fraction of common cells contained in a pair of clusters. This matching index was

also visualized as the total ‘‘mass’’ distributed along the diagonal entries (Figure S5E). The cross-validation coefficient (Figure 5I) is

the fraction of cells that were assigned membership to the same cluster for both halves of the data.

Screen for anatomically conserved clusters
We used the following criteria to determine whether two clusters were considered occupying comparable locations in anatomical

space. First, given a pair of clusters, we calculated the distance of all pairs of cells within each cluster (sets d1 and d2), and the dis-

tance of all pairs of cells between the two clusters (d12). If the relative distance mean(d12) / min(mean(d1), mean(d2)) was less than 2,

we considered the clusters conserved (with some restrictions on cluster sizes to exclude outliers). For each cluster in a given fish, we

compared it with all clusters in all other fish. If there were at least 6 other fish that contained at least 1 matched cluster based on the

criteria above (multiple matching clusters were possible), this cluster was marked as a conserved cluster over the population

(Figure 5N).

Stimulus and motor regressors
The set of stimulus regressors that represent different stimulus features (Figure 2D-H) were generated by convolving box-car regres-

sors with a single exponential kernel for the calcium indicator GCaMP6f (half-time 0.4 s, peak delay 0.08 s).

Motor regressors were generated from recorded fictive behavior (forward, leftward and rightward swimming) convolved with the

temporal filter of the calcium indicator (exponential function, half-time 0.4 s, peak delay 0.08 s). Though sufficient for some analyses,

this simple convolutionmay not fully account for the relation between the electrophysiological recording from the tail and the nuclear-

labeled calcium trace. It is also possible that in some individual fish, the recording was not stable for the entire duration of the experie-

ment. For some regressionmaps, we found that the results can be improved by using ‘‘motor seed’’ traces as the behavior regressor.

The motor seeds are a small number of neurons manually selected in each fish based on two criteria: (i) the neurons have the highest

correlations to the fictive behavior and (ii) they are located in the region of the hindbrain that is known to send output signals to drive

swimming behavior (Figure S3C-D). Motor seeds were calculated for all stimulus blocks. The average activity traces of the motor

seed cells were denoted ‘‘motor outputs’’ in themanuscript (as opposed to ‘‘motor regressors’’). In analysis for Figure 3A,B, the fictive

motor regressors were used, whereas in Figure 3E-G and Figure 4, the motor outputs taken from motor seeds were used.
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2D sensory–motor regression
In several analysis (Figure 3E, Figure 4G, Figure 5Q), functional activity of cells is plotted in a 2D activity space. In these plots, each dot

represents a cell, and it’s location in x and y are determined by various quantifications of the cell’s activity.

Figure 3E: x axis: stimulus-independent motor - regression coefficients with respect to left motor res. regressor. Plot was calcu-

lated using all stimulus blocks together. y axis: stimulus-driven motor - regression coefficients with respect to motor avg. regressor.

Figure 4G (also Figure S4E,G): x axis: stimulus-independent motor - regression coefficient of cellular activity with left motor res. The

maximum value from phT or OMR blocks was used. y axis: sensory component - square root of the variance explained by periodic

component of activity. The minimum value from phT or OMR blocks was used.

Figure 5Q (also Figure S6E): x axis: sensory component - square root of variance explained by periodic component of activity.

y axis: eye-movement component - regression coefficient with left motor res. of ABD activity. Similar to Figure 4G except ABD activity

is used as the motor regressor instead of fictive traces from the tail.

Decomposing activity into trial averages and trial residuals
For any trace, we index its value at trial k and time t (relative to the beginning of the trial) as xt;k . Its trial average component is defined

as xAvgt;k = xAvgt = 1
n

Pn
j = 1xt;j (n is the number of trials; we are using both subscripts t; k to indicate that xAvgt;k is a vector of the same length

as the original xt;k , although its value does not depend on k.), and its trial residual component is xRest;k = xt;k � xAvgt . Importantly, xAvg and

xRes are orthogonal, because
P

t;kx
Res
t;k xAvgt;k =

PT
t =1

Pn
k =1ðxt;k � xAvgt ÞxAvgt = 0 (T is the period of the stimulus). In fact, xRes is orthogonal

to any trace that is periodic to the stimulus, according to the same argument. In particular, let S represent the subspace of all periodic

traces locked to stimulus trials, then xAvg is the orthogonal projection of x in S.

The sensory periodicity (as in Figure 3e and Figure 4g) is calculated as the square root of the fraction of the variance of xAvg relative

to x. The square root is taken so that the resulting index is comparable in scale to correlation coefficients (e.g., consider the corre-

lation between the trial-average and the original trace) that we use in other analyses such as the correlation to motor-residuals and

motor-averages.

When applying the decomposition into trial-average and trial-residual to motor traces, the orthogonality of the decomposition

removes the correlation betweenmotor and stimulus, and regressing to motor-res hence improves the identification of motor related

neurons as used in Figure 3 and 4.

As shown above, the motor-res is orthogonal to S. This means that ðcorrelation to motor­resÞ2 + ðsensory periodicityÞ2 =

the fraction of variance of x within the joint subspace spanned byfmotor­res; Sg%1. Note that the subspace spanned

by {motor-res, S} is the same as that spanned by {motor, S}. So the amount of remaining activityffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðcorrelation to motor­resÞ2 � ðsensory periodicityÞ2

q
represents activity beyond sensory and recorded motor behavior.

Selection of stimulus-locked functional clusters
This analysis is performed in the GUI for single fish, for each stimulus condition, and the curated selection of clusters are presented in

Figure 2H-K. The analysis sequence is as follows. We (1) rank all cells in the brain by their ‘‘periodicity’’ (average standard deviation

between stimulus repetitions, for z-scored traces) to select the top periodic cells (a good range is top 5%–10%); (2) divide into a rela-

tively large number of clusters (k-means with k = 20); (3) rank bymotor regression (correlation) coefficient (highest coefficient of either

left/right motor output), and discard the clusters that have relatively high correlation to motor (threshold varies slightly between an-

imals); (4) rank these k-means clusters based on average correlation of cells within a cluster, and discard (outlier) clusters with signif-

icantly less concerted activity patterns; (5) rank the remaining clusters hierarchically, and merge (or discard) highly similar clusters.

Similar to thewhole-brain clustering algorithm, the above steps are not designed to find the globally optimal clusters, but aremeant to

provide qualitative insight into the characteristic types of functional profiles present in the brain.

Optogenetic stimulation experiments
Transgenic larval zebrafish (5 - 7 dpf) expressing CoChR-eGFP (Klapoetke et al., 2014) under the elavl3 promoter were used for op-

togenetic stimulation. The fish linewas created using the Tol2 system (Urasaki et al., 2008). The fishwere placed into a fictive behavior

recording setup similar to that described above, but underneath a two-photon microscope instead of a light-sheet microscope. To

evoke consistent swimming, a slow forward grating was presented at all timeswith closed-loop visual feedback. Neurons expressing

CoChR-eGFP were visualized through 2-photon imaging (920 nm excitation) of the eGFP tag, and the anterior hindbrain (aHB) was

identified using visual inspection and the functional maps. A region of the aHB(1-2) (a 50 mm x 50 mm plane) inside the left/right

responsive multi-stimulus clusters (Figure 4) either left or right of the midline were stimulated by line-scanning with a Ti:S laser tuned

to 1030 nm (Coherent Chameleon Ultra II). A dwell-time of 5 ms per neuron at a stimulation rate of 2 Hz was used. Turn direction (see

Fictive behavior recording) and swim frequency during periods of forward grating and optogenetic stimulation was compared with

turn direction and swim frequency during periods of forward grating without optogenetic stimulation. Recordings lasted 5-6 min per

animal.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Figure 2a, bottom: mean ± SD dF/F plotted for cells with regression coefficient > 0.5

Figure 2b-e: cells with regression coefficient > 0.5 plotted. Multiple fish superimposed.

Figure 2h-k: left: mean ± SD dF/F plotted for cells with regression coefficient > 0.5. right: cells with regression coefficient > 0.5

plotted. Single fish examples

Figure 3a: cells with regression coefficient > 0.5 plotted, single fish example

Figure 3b: cells with regression coefficient > 0.5 plotted, n = 11 fish superimposed

Figure 3c, bottom: mean ± SD dF/F plotted for cells with regression coefficient > 0.5

Figure 3e, maps: top 2% of cells by regression rankings plotted for each fish, n = 17 fish superimposed

Figure 3e, scatterplot: each cell represented by a point. x value is regression coefficient for motor res. for that cell. y value is regres-

sion coefficient for motor avg. for that cell. Data for a single example fish is shown, with motor regressors derived from the left-side

motor output. See methods for definition of motor output, motor avg. and motor res.

Figure 3f,g: top 2% of cells by regression rankings plotted for each fish, n = 17 fish superimposed

Figure 4a: phT and OMRmaps show top 3% of cells by regression coefficient ranking. Convergence map shows cells included in

both phT and OMR maps.

Figure 4b: Cells that have a correlation coefficient > 0.4 to at least one of the regressors shown are classified by their best regres-

sor. mean ± SD dF/F plotted for cells all taken from the same fish. n refers to the number of cells included in each category.

Figure 4c: Convergence maps show cells included in top 5% rank for both stimuli.

Figure 4d: Number of convergent cells divided by number of cells that are highly tuned (top 5%) to either stimulus.

Figure 4f: Number of convergent cells (defined in Figure 4c) found in different brain areas for n = 18 fish. mean ± SEM shown in red.

Figure 4g: scatterplot: each cell represented by a point. x value: regression coefficient for motor res. for that cell. y value: square

root of the variance explained by the periodic component of the cell’s activity. Data for a single example fish is shown, with motor

regressors derived from the left-side motor output. Red points: convergent cells, defined as intersection of top 5% phT and OMR

regression maps. Blue points: top cells ranked by y value, same number as red cells. Green points: top cells ranked by x value,

same number as red cells. Top: histogram of x values for red and green cells. Right: histogram of y values for red and blue cells.

Figure 4i: Maps of red, green and blue cells (defined as in Figure 4g), superimposed for n = 11 fish.

Figure 5e: Histogram of number of cells included in each cluster, mean ± SEM across n = 18 fish plotted for each bin

Figure 5f: Histogram for average correlation between cells for each cluster, mean ± SEM across n = 18 fish plotted for each bin

Figure 5g: Matrix of Pearson correlation coefficients between pairs of clusters.

Figure 5h: t-SNE for one example fish.

Figure 5i: Two-fold cross-validation showing fraction of clusters that pass a cross-validation test. SeeMethods for details of cross-

validation. Average fraction of clusters shown for n = 6 fish.

Figure 5k: Histogram of average anatomical distance between cells for each cluster, mean ± SEM across n = 18 fish plotted for

each bin

Figure 5n: Map of clusters that are conserved for at least n = 6 fish. Conserved clusters are superimposed for a pool of n = 18 fish.

See methods for details of definition of ‘‘conserved.’’

Figure 5o: Map of ABD clusters, n = 17 fish superimposed.

Figure 5q: Each cell represented by a point. x value: square root of the variance explained by the periodic component of the cell’s

activity. y value: regression coefficient for motor res. for that cell.

DATA AND SOFTWARE AVAILABILITY

Software and instructions for downloading data are available at www.github.com/xiuyechen/fishexplorer.
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