Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_secondary_menu | block
janelia7_blocks-janelia7_fake_breadcrumb | block
Ahrens Lab / Publications
general_search_page-panel_pane_1 | views_panes

34 Publications

Showing 1-10 of 34 results
12/12/18 | Reactive oxygen species regulate activity-dependent neuronal structural plasticity in Drosophila.
Oswald MC, Brooks PS, Zwart MF, Mukherjee A, West RJ, Morarach K, Sweeney ST, Landgraf M
eLife. 2018 Dec 12:. doi: 10.7554/eLife.39393

Neurons are inherently plastic, adjusting their structure, connectivity and excitability in response to changes in activity. How neurons sense changes in their activity level and then transduce these to structural changes remains to be fully elucidated. Working with the Drosophila larval locomotor network, we show that neurons use reactive oxygen species (ROS), metabolic byproducts, to monitor their activity. ROS signals are both necessary and sufficient for activity-dependent structural adjustments of both pre- and postsynaptic terminals and for network output, as measured by larval crawling behavior. We find the highly conserved Parkinsons disease-linked protein DJ-1b acts as a redox sensor in neurons where it regulates pre- and postsynaptic structural plasticity, in part via modulation of the PTEN-PI3Kinase pathway. Neuronal ROS thus play an important physiological role as second messengers required for neuronal and network tuning, whose dysregulation in the ageing brain and under neurodegenerative conditions may contribute to synaptic dysfunction.

View Publication Page
11/30/18 | Brain-wide circuit interrogation at the cellular level guided by online analysis of neuronal function.
Vladimirov N, Wang C, Höckendorf B, Pujala A, Tanimoto M, Mu Y, Yang C, Wittenbach J, Freeman J, Preibisch S, Koyama M, Keller PJ, Ahrens MB
Nature Methods. 2018 Nov 30;15(12):1117-1125. doi: 10.1038/s41592-018-0221-x

Whole-brain imaging allows for comprehensive functional mapping of distributed neural pathways, but neuronal perturbation experiments are usually limited to targeting predefined regions or genetically identifiable cell types. To complement whole-brain measures of activity with brain-wide manipulations for testing causal interactions, we introduce a system that uses measuredactivity patterns to guide optical perturbations of any subset of neurons in the same fictively behaving larval zebrafish. First, a light-sheet microscope collects whole-brain data that are rapidly analyzed by a distributed computing system to generate functional brain maps. On the basis of these maps, the experimenter can then optically ablate neurons and image activity changes across the brain. We applied this method to characterize contributions of behaviorally tuned populations to the optomotor response. We extended the system to optogenetically stimulate arbitrary subsets of neurons during whole-brain imaging. These open-source methods enable delineating the contributions of neurons to brain-wide circuit dynamics and behavior in individual animals.

View Publication Page
11/21/18 | Brain-wide organization of neuronal activity and convergent sensorimotor transformations in larval zebrafish.
Chen X, Mu Y, Hu Y, Kuan AT, Nikitchenko M, Randlett O, Chen AB, Gavornik JP, Sompolinsky H, Engert F, Ahrens MB
Neuron. 2018 Nov 21;100(4):876-890.e5. doi: 10.1016/j.neuron.2018.09.042

Simultaneous recordings of large populations of neurons in behaving animals allow detailed observation of high-dimensional, complex brain activity. However, experimental approaches often focus on singular behavioral paradigms or brain areas. Here, we recorded whole-brain neuronal activity of larval zebrafish presented with a battery of visual stimuli while recording fictive motor output. We identified neurons tuned to each stimulus type and motor output and discovered groups of neurons in the anterior hindbrain that respond to different stimuli eliciting similar behavioral responses. These convergent sensorimotor representations were only weakly correlated to instantaneous motor activity, suggesting that they critically inform, but do not directly generate, behavioral choices. To catalog brain-wide activity beyond explicit sensorimotor processing, we developed an unsupervised clustering technique that organizes neurons into functional groups. These analyses enabled a broad overview of the functional organization of the brain and revealed numerous brain nuclei whose neurons exhibit concerted activity patterns.

View Publication Page
11/12/18 | Visual physiology of the layer 4 cortical circuit in silico.
Arkhipov A, Gouwens NW, Billeh YN, Gratiy S, Iyer R, Wei Z, Xu Z, Abbasi-Asl R, Berg J, Buice M, Cain N, da Costa N, de Vries S, Denman D, Durand S, Feng D, Jarsky T, Lecoq J, Lee B, Li L, Mihalas S, Ocker GK, Olsen SR, Reid RC, Soler-Llavina G, Sorensen SA, Wang Q, Waters J, Scanziani M, Koch C
PLoS Computational Biology. 2018 Nov 12;14(11):e1006535. doi: 10.1371/journal.pcbi.1006535

Despite advances in experimental techniques and accumulation of large datasets concerning the composition and properties of the cortex, quantitative modeling of cortical circuits under in-vivo-like conditions remains challenging. Here we report and publicly release a biophysically detailed circuit model of layer 4 in the mouse primary visual cortex, receiving thalamo-cortical visual inputs. The 45,000-neuron model was subjected to a battery of visual stimuli, and results were compared to published work and new in vivo experiments. Simulations reproduced a variety of observations, including effects of optogenetic perturbations. Critical to the agreement between responses in silico and in vivo were the rules of functional synaptic connectivity between neurons. Interestingly, after extreme simplification the model still performed satisfactorily on many measurements, although quantitative agreement with experiments suffered. These results emphasize the importance of functional rules of cortical wiring and enable a next generation of data-driven models of in vivo neural activity and computations.

View Publication Page
02/26/18 | A robotic multidimensional directed evolution approach applied to fluorescent voltage reporters.
Piatkevich KD, Jung EE, Straub C, Linghu C, Park D, Suk H, Hochbaum DR, Goodwin D, Pnevmatikakis E, Pak N, Kawashima T, Yang C, Rhoades JL, Shemesh O, Asano S, Yoon Y, Freifeld L, Saulnier JL, Riegler C, Engert F, Hughes T, Drobizhev M, Szabo B, Ahrens MB, Flavell SW, Sabatini BL, Boyden ES
Nature Chemical Biology. 2018 Feb 26:. doi: 10.1038/s41589-018-0004-9

We developed a new way to engineer complex proteins toward multidimensional specifications using a simple, yet scalable, directed evolution strategy. By robotically picking mammalian cells that were identified, under a microscope, as expressing proteins that simultaneously exhibit several specific properties, we can screen hundreds of thousands of proteins in a library in just a few hours, evaluating each along multiple performance axes. To demonstrate the power of this approach, we created a genetically encoded fluorescent voltage indicator, simultaneously optimizing its brightness and membrane localization using our microscopy-guided cell-picking strategy. We produced the high-performance opsin-based fluorescent voltage reporter Archon1 and demonstrated its utility by imaging spiking and millivolt-scale subthreshold and synaptic activity in acute mouse brain slices and in larval zebrafish in vivo. We also measured postsynaptic responses downstream of optogenetically controlled neurons in C. elegans.

View Publication Page
02/24/18 | Integrative whole-brain neuroscience in larval zebrafish.
Vanwalleghem GC, Ahrens MB, Scott EK
Current Opinion in Neurobiology. 2018 Feb 24;50:136-145. doi: 10.1016/j.conb.2018.02.004

Due to their small size and transparency, zebrafish larvae are amenable to a range of fluorescence microscopy techniques. With the development of sensitive genetically encoded calcium indicators, this has extended to the whole-brain imaging of neural activity with cellular resolution. This technique has been used to study brain-wide population dynamics accompanying sensory processing and sensorimotor transformations, and has spurred the development of innovative closed-loop behavioral paradigms in which stimulus-response relationships can be studied. More recently, microscopes have been developed that allow whole-brain calcium imaging in freely swimming and behaving larvae. In this review, we highlight the technologies underlying whole-brain functional imaging in zebrafish, provide examples of the sensory and motor processes that have been studied with this technique, and discuss the need to merge data from whole-brain functional imaging studies with neurochemical and anatomical information to develop holistic models of functional neural circuits.

View Publication Page
08/03/17 | Multi-scale approaches for high-speed imaging and analysis of large neural populations.
Friedrich J, Yang W, Soudry D, Mu Y, Ahrens MB, Yuste R, Peterka DS, Paninski L
PLoS Computational Biology. 2017 Aug 03;13(8):e1005685. doi: 10.1371/journal.pcbi.1005685

Progress in modern neuroscience critically depends on our ability to observe the activity of large neuronal populations with cellular spatial and high temporal resolution. However, two bottlenecks constrain efforts towards fast imaging of large populations. First, the resulting large video data is challenging to analyze. Second, there is an explicit tradeoff between imaging speed, signal-to-noise, and field of view: with current recording technology we cannot image very large neuronal populations with simultaneously high spatial and temporal resolution. Here we describe multi-scale approaches for alleviating both of these bottlenecks. First, we show that spatial and temporal decimation techniques based on simple local averaging provide order-of-magnitude speedups in spatiotemporally demixing calcium video data into estimates of single-cell neural activity. Second, once the shapes of individual neurons have been identified at fine scale (e.g., after an initial phase of conventional imaging with standard temporal and spatial resolution), we find that the spatial/temporal resolution tradeoff shifts dramatically: after demixing we can accurately recover denoised fluorescence traces and deconvolved neural activity of each individual neuron from coarse scale data that has been spatially decimated by an order of magnitude. This offers a cheap method for compressing this large video data, and also implies that it is possible to either speed up imaging significantly, or to "zoom out" by a corresponding factor to image order-of-magnitude larger neuronal populations with minimal loss in accuracy or temporal resolution.

View Publication Page
07/31/17 | The role of the serotonergic system in motor control.
Kawashima T
Neuroscience Research. 2018 Apr;129:32-9. doi: 10.1016/j.neures.2017.07.005

The serotonergic system in the vertebrate brain is implicated in various behaviors and diseases. Its involvement in motor control has been studied for over half a century, but efforts to build a unified model of its functions have been hampered due to the complexity of serotonergic neuromodulation. This review summarizes the anatomical structure of the serotonergic system, its afferent and efferent connections to other brain regions, and recent insights into the sensorimotor computations in the serotonergic system, and considers future research directions into the roles of serotonergic system in motor control.

View Publication Page
10/27/16 | The serotonergic system tracks the outcomes of actions to mediate short-term motor learning.
Kawashima T, Zwart MF, Yang C, Mensh BD, Ahrens MB
Cell. 2016 Oct 27;167(4):933-46. doi: 10.1016/j.cell.2016.09.055

To execute accurate movements, animals must continuously adapt their behavior to changes in their bodies and environments. Animals can learn changes in the relationship between their locomotor commands and the resulting distance moved, then adjust command strength to achieve a desired travel distance. It is largely unknown which circuits implement this form of motor learning, or how. Using whole-brain neuronal imaging and circuit manipulations in larval zebrafish, we discovered that the serotonergic dorsal raphe nucleus (DRN) mediates short-term locomotor learning. Serotonergic DRN neurons respond phasically to swim-induced visual motion, but little to motion that is not self-generated. During prolonged exposure to a given motosensory gain, persistent DRN activity emerges that stores the learned efficacy of motor commands and adapts future locomotor drive for tens of seconds. The DRN’s ability to track the effectiveness of motor intent may constitute a computational building block for the broader functions of the serotonergic system.

View Publication Page
07/28/16 | A practical guide to light sheet microscopy.
Bennett DV, Ahrens MB
Methods in Molecular Biology (Clifton, N.J.). 2016;1451:321-31. doi: 10.1007/978-1-4939-3771-4_22

Light sheet fluorescence microscopy is an efficient method for imaging large volumes of biological tissue, including brains of larval zebrafish, at high spatial and fairly high temporal resolution with minimal phototoxicity.Here, we provide a practical guide for those who intend to build a light sheet microscope for fluorescence imaging in live larval zebrafish brains or other tissues.

View Publication Page