Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_secondary_menu | block
janelia7_blocks-janelia7_fake_breadcrumb | block
Ahrens Lab / Publications
custom | custom


facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

2 Publications

Showing 1-2 of 2 results
Your Criteria:
    07/11/22 | FourierNets enable the design of highly non-local optical encoders for computational imaging
    Deb D, Jiao Z, Sims R, Chen AB, Broxton M, Ahrens MB, Podgorski K, Turaga SC


    Differentiable simulations of optical systems can be combined with deep learning-based reconstruction networks to enable high performance computational imaging via end-to-end (E2E) optimization of both the optical encoder and the deep decoder. This has enabled imaging applications such as 3D localization microscopy, depth estimation, and lensless photography via the optimization of local optical encoders. More challenging computational imaging applications, such as 3D snapshot microscopy which compresses 3D volumes into single 2D images, require a highly non-local optical encoder. We show that existing deep network decoders have a locality bias which prevents the optimization of such highly non-local optical encoders. We address this with a decoder based on a shallow neural network architecture using global kernel Fourier convolutional neural networks (FourierNets). We show that FourierNets surpass existing deep network based decoders at reconstructing photographs captured by the highly non-local DiffuserCam optical encoder. Further, we show that FourierNets enable E2E optimization of highly non-local optical encoders for 3D snapshot microscopy. By combining FourierNets with a large-scale multi-GPU differentiable optical simulation, we are able to optimize non-local optical encoders 170

    View Publication Page
    04/21/21 | Programmable 3D snapshot microscopy with Fourier convolutional networks
    Deb D, Jiao Z, Chen AB, Broxton M, Ahrens MB, Podgorski K, Turaga SC

    3D snapshot microscopy enables fast volumetric imaging by capturing a 3D volume in a single 2D camera image and performing computational reconstruction. Fast volumetric imaging has a variety of biological applications such as whole brain imaging of rapid neural activity in larval zebrafish. The optimal microscope design for this optical 3D-to-2D encoding is both sample- and task-dependent, with no general solution known. Deep learning based decoders can be combined with a differentiable simulation of an optical encoder for end-to-end optimization of both the deep learning decoder and optical encoder. This technique has been used to engineer local optical encoders for other problems such as depth estimation, 3D particle localization, and lensless photography. However, 3D snapshot microscopy is known to require a highly non-local optical encoder which existing UNet-based decoders are not able to engineer. We show that a neural network architecture based on global kernel Fourier convolutional neural networks can efficiently decode information from multiple depths in a volume, globally encoded across a 3D snapshot image. We show in simulation that our proposed networks succeed in engineering and reconstructing optical encoders for 3D snapshot microscopy where the existing state-of-the-art UNet architecture fails. We also show that our networks outperform the state-of-the-art learned reconstruction algorithms for a computational photography dataset collected on a prototype lensless camera which also uses a highly non-local optical encoding.

    View Publication Page