Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_secondary_menu | block
janelia7_blocks-janelia7_fake_breadcrumb | block
Ahrens Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

52 Publications

Showing 41-50 of 52 results
06/06/13 | Two-photon calcium imaging during fictive navigation in virtual environments.
Ahrens MB, Huang KH, Narayan S, Mensh BD, Engert F
Frontiers in Neural Circuits. 2013 Jun 6;7:104. doi: 10.3389/fncir.2013.00104 *equal contribution

A full understanding of nervous system function requires recording from large populations of neurons during naturalistic behaviors. Here we enable paralyzed larval zebrafish to fictively navigate two-dimensional virtual environments while we record optically from many neurons with two-photon imaging. Electrical recordings from motor nerves in the tail are decoded into intended forward swims and turns, which are used to update a virtual environment displayed underneath the fish. Several behavioral features-such as turning responses to whole-field motion and dark avoidance-are well-replicated in this virtual setting. We readily observed neuronal populations in the hindbrain with laterally selective responses that correlated with right or left optomotor behavior. We also observed neurons in the habenula, pallium, and midbrain with response properties specific to environmental features. Beyond single-cell correlations, the classification of network activity in such virtual settings promises to reveal principles of brainwide neural dynamics during behavior.

View Publication Page
05/01/13 | Whole-brain functional imaging at cellular resolution using light-sheet microscopy.
Ahrens MB, Orger MB, Robson DN, Li JM, Keller PJ
Nature Methods. 2013 May;10(5):413-20. doi: 10.1038/nmeth.2434

Brain function relies on communication between large populations of neurons across multiple brain areas, a full understanding of which would require knowledge of the time-varying activity of all neurons in the central nervous system. Here we use light-sheet microscopy to record activity, reported through the genetically encoded calcium indicator GCaMP5G, from the entire volume of the brain of the larval zebrafish in vivo at 0.8 Hz, capturing more than 80% of all neurons at single-cell resolution. Demonstrating how this technique can be used to reveal functionally defined circuits across the brain, we identify two populations of neurons with correlated activity patterns. One circuit consists of hindbrain neurons functionally coupled to spinal cord neuropil. The other consists of an anatomically symmetric population in the anterior hindbrain, with activity in the left and right halves oscillating in antiphase, on a timescale of 20 s, and coupled to equally slow oscillations in the inferior olive.

View Publication Page
02/27/13 | Identification of nonvisual photomotor response cells in the vertebrate hindbrain.
Kokel D, Dunn TW, Ahrens MB, Alshut R, Cheung CY, Saint-Amant L, Bruni G, Mateus R, van Ham TJ, Shiraki T, Fukada Y, Kojima D, Yeh JJ, Mikut R, von Lintig J, Engert F, Peters RT
The Journal of Neuroscience. 2013 Feb 27;33(9):3834-43. doi: 10.1523/JNEUROSCI.3689-12.2013

Nonvisual photosensation enables animals to sense light without sight. However, the cellular and molecular mechanisms of nonvisual photobehaviors are poorly understood, especially in vertebrate animals. Here, we describe the photomotor response (PMR), a robust and reproducible series of motor behaviors in zebrafish that is elicited by visual wavelengths of light but does not require the eyes, pineal gland, or other canonical deep-brain photoreceptive organs. Unlike the relatively slow effects of canonical nonvisual pathways, motor circuits are strongly and quickly (seconds) recruited during the PMR behavior. We find that the hindbrain is both necessary and sufficient to drive these behaviors. Using in vivo calcium imaging, we identify a discrete set of neurons within the hindbrain whose responses to light mirror the PMR behavior. Pharmacological inhibition of the visual cycle blocks PMR behaviors, suggesting that opsin-based photoreceptors control this behavior. These data represent the first known light-sensing circuit in the vertebrate hindbrain.

View Publication Page
02/01/13 | Optogenetics in a transparent animal: circuit function in the larval zebrafish.
Portugues R, Severi KE, Wyart C, Ahrens MB
Current Opinion in Neurobiology. 2013 Feb;23(1):119-26. doi: 10.1016/j.conb.2012.11.001

Optogenetic tools can be used to manipulate neuronal activity in a reversible and specific manner. In recent years, such methods have been applied to uncover causal relationships between activity in specified neuronal circuits and behavior in the larval zebrafish. In this small, transparent, genetic model organism, noninvasive manipulation and monitoring of neuronal activity with light is possible throughout the nervous system. Here we review recent work in which these new tools have been applied to zebrafish, and discuss some of the existing challenges of these approaches.

View Publication Page
05/24/12 | Brain-wide neuronal dynamics during motor adaptation in zebrafish.
Ahrens MB, Li JM, Orger MB, Robson DN, Schier AF, Engert F, Portugues R
Nature. 2012 May 24;485(7399):471-7. doi: 10.1038/nature11057

A fundamental question in neuroscience is how entire neural circuits generate behaviour and adapt it to changes in sensory feedback. Here we use two-photon calcium imaging to record the activity of large populations of neurons at the cellular level, throughout the brain of larval zebrafish expressing a genetically encoded calcium sensor, while the paralysed animals interact fictively with a virtual environment and rapidly adapt their motor output to changes in visual feedback. We decompose the network dynamics involved in adaptive locomotion into four types of neuronal response properties, and provide anatomical maps of the corresponding sites. A subset of these signals occurred during behavioural adjustments and are candidates for the functional elements that drive motor learning. Lesions to the inferior olive indicate a specific functional role for olivocerebellar circuitry in adaptive locomotion. This study enables the analysis of brain-wide dynamics at single-cell resolution during behaviour.

View Publication Page
02/08/11 | Observers exploit stochastic models of sensory change to help judge the passage of time.
Ahrens MB, Sahani M
Current Biology. 2011 Feb 8;21(3):200-6. doi: 10.1016/j.cub.2010.12.043

Sensory stimulation can systematically bias the perceived passage of time, but why and how this happens is mysterious. In this report, we provide evidence that such biases may ultimately derive from an innate and adaptive use of stochastically evolving dynamic stimuli to help refine estimates derived from internal timekeeping mechanisms. A simplified statistical model based on probabilistic expectations of stimulus change derived from the second-order temporal statistics of the natural environment makes three predictions. First, random noise-like stimuli whose statistics violate natural expectations should induce timing bias. Second, a previously unexplored obverse of this effect is that similar noise stimuli with natural statistics should reduce the variability of timing estimates. Finally, this reduction in variability should scale with the interval being timed, so as to preserve the overall Weber law of interval timing. All three predictions are borne out experimentally. Thus, in the context of our novel theoretical framework, these results suggest that observers routinely rely on sensory input to augment their sense of the passage of time, through a process of Bayesian inference based on expectations of change in the natural environment.

View Publication Page
01/01/10 | Multilinear models of single cell responses in the medial nucleus of the trapezoid body.
Englitz B, Ahrens M, Tolnai S, Rübsamen R, Sahani M, Jost J
Network. 2010;21(1-2):91-124. doi: 10.3109/09548981003801996

The representation of acoustic stimuli in the brainstem forms the basis for higher auditory processing. While some characteristics of this representation (e.g. tuning curve) are widely accepted, it remains a challenge to predict the firing rate at high temporal resolution in response to complex stimuli. In this study we explore models for in vivo, single cell responses in the medial nucleus of the trapezoid body (MNTB) under complex sound stimulation. We estimate a family of models, the multilinear models, encompassing the classical spectrotemporal receptive field and allowing arbitrary input-nonlinearities and certain multiplicative interactions between sound energy and its short-term auditory context. We compare these to models of more traditional type, and also evaluate their performance under various stimulus representations. Using the context model, 75% of the explainable variance could be predicted based on a cochlear-like, gamma-tone stimulus representation. The presence of multiplicative contextual interactions strongly reduces certain inhibitory/suppressive regions of the linear kernels, suggesting an underlying nonlinear mechanism, e.g. cochlear or synaptic suppression, as the source of the suppression in MNTB neuronal responses. In conclusion, the context model provides a rich and still interpretable extension over many previous phenomenological models for modeling responses in the auditory brainstem at submillisecond resolution.

View Publication Page
02/20/08 | Nonlinearities and contextual influences in auditory cortical responses modeled with multilinear spectrotemporal methods.
Ahrens MB, Linden JF, Sahani M
The Journal of Neuroscience. 2008 Feb 20;28(8):1929-42. doi: 10.1523/JNEUROSCI.3377-07.2008

The relationship between a sound and its neural representation in the auditory cortex remains elusive. Simple measures such as the frequency response area or frequency tuning curve provide little insight into the function of the auditory cortex in complex sound environments. Spectrotemporal receptive field (STRF) models, despite their descriptive potential, perform poorly when used to predict auditory cortical responses, showing that nonlinear features of cortical response functions, which are not captured by STRFs, are functionally important. We introduce a new approach to the description of auditory cortical responses, using multilinear modeling methods. These descriptions simultaneously account for several nonlinearities in the stimulus-response functions of auditory cortical neurons, including adaptation, spectral interactions, and nonlinear sensitivity to sound level. The models reveal multiple inseparabilities in cortical processing of time lag, frequency, and sound level, and suggest functional mechanisms by which auditory cortical neurons are sensitive to stimulus context. By explicitly modeling these contextual influences, the models are able to predict auditory cortical responses more accurately than are STRF models. In addition, they can explain some forms of stimulus dependence in STRFs that were previously poorly understood.

View Publication Page
01/01/08 | Inferring elapsed time from stochastic neural processes.
Ahrens MB , Sahani M.
Neural Information Processing Systems. 2008;20:

Many perceptual processes and neural computations, such as speech recognition, motor control and learning, depend on the ability to measure and mark the passage of time. However, the processes that make such temporal judgements possible are unknown. A number of different hypothetical mechanisms have been advanced, all of which depend on the known, temporally predictable evolution of a neural or psychological state, possibly through oscillations or the gradual decay of a memory trace. Alternatively, judgements of elapsed time might be based on observations of temporally structured, but stochastic processes. Such processes need not be specific to the sense of time; typical neural and sensory processes contain at least some statistical structure across a range of time scales. Here, we investigate the statistical properties of an estimator of elapsed time which is based on a simple family of stochastic process.

View Publication Page
01/01/08 | Inferring input nonlinearities in neural encoding models.
Ahrens MB, Paninski L, Sahani M
Network. 2008;19(1):35-67. doi: 10.1080/09548980701813936

We describe a class of models that predict how the instantaneous firing rate of a neuron depends on a dynamic stimulus. The models utilize a learnt pointwise nonlinear transform of the stimulus, followed by a linear filter that acts on the sequence of transformed inputs. In one case, the nonlinear transform is the same at all filter lag-times. Thus, this "input nonlinearity" converts the initial numerical representation of stimulus value to a new representation that provides optimal input to the subsequent linear model. We describe algorithms that estimate both the input nonlinearity and the linear weights simultaneously; and present techniques to regularise and quantify uncertainty in the estimates. In a second approach, the model is generalized to allow a different nonlinear transform of the stimulus value at each lag-time. Although more general, this model is algorithmically more straightforward to fit. However, it has many more degrees of freedom than the first approach, thus requiring more data for accurate estimation. We test the feasibility of these methods on synthetic data, and on responses from a neuron in rodent barrel cortex. The models are shown to predict responses to novel data accurately, and to recover several important neuronal response properties.

View Publication Page