Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_secondary_menu | block
More in this page
janelia7_blocks-janelia7_fake_breadcrumb | block
Beyene Lab / Publications
custom | custom


facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

2 Publications

Showing 1-2 of 2 results
Your Criteria:
    10/18/17 | Stochastic simulation of dopamine neuromodulation for implementation of fluorescent neurochemical probes in the striatal extracellular space.
    Beyene AG, McFarlane IR, Pinals RL, Landry MP
    ACS Chemical Neuroscience. 2017 Oct 18;8(10):2275-2289. doi: 10.1021/acschemneuro.7b00193

    Imaging the dynamic behavior of neuromodulatory neurotransmitters in the extracelluar space that arise from individual quantal release events would constitute a major advance in neurochemical imaging. Spatial and temporal resolution of these highly stochastic neuromodulatory events requires concurrent advances in the chemical development of optical nanosensors selective for neuromodulators in concert with advances in imaging methodologies to capture millisecond neurotransmitter release. Herein, we develop and implement a stochastic model to describe dopamine dynamics in the extracellular space (ECS) of the brain dorsal striatum to guide the design and implementation of fluorescent neurochemical probes that record neurotransmitter dynamics in the ECS. Our model is developed from first-principles and simulates release, diffusion, and reuptake of dopamine in a 3D simulation volume of striatal tissue. We find that in vivo imaging of neuromodulation requires simultaneous optimization of dopamine nanosensor reversibility and sensitivity: dopamine imaging in the striatum or nucleus accumbens requires nanosensors with an optimal dopamine dissociation constant (K) of 1 μM, whereas Ks above 10 μM are required for dopamine imaging in the prefrontal cortex. Furthermore, as a result of the probabilistic nature of dopamine terminal activity in the striatum, our model reveals that imaging frame rates of 20 Hz are optimal for recording temporally resolved dopamine release events. Our work provides a modeling platform to probe how complex neuromodulatory processes can be studied with fluorescent nanosensors and enables direct evaluation of nanosensor chemistry and imaging hardware parameters. Our stochastic model is generic for evaluating fluorescent neurotransmission probes, and is broadly applicable to the design of other neurotransmitter fluorophores and their optimization for implementation in vivo.

    View Publication Page
    08/15/17 | Dual near-Infrared two-photon microscopy for deep-tissue dopamine nanosensor imaging.
    Bonis-O'Donnell JT, Page RH, Beyene AG, Tindall EG, McFarlane IR, Landry MP
    Advanced Functional Materials. 2017 August 15;27(39):1702112. doi: 10.1002/adfm.v27.3910.1002/adfm.201702112

    A key limitation for achieving deep imaging in biological structures lies in photon absorption and scattering leading to attenuation of fluorescence. In particular, neurotransmitter imaging is challenging in the biologically relevant context of the intact brain for which photons must traverse the cranium, skin, and bone. Thus, fluorescence imaging is limited to the surface cortical layers of the brain, only achievable with craniotomy. Herein, this study describes optimal excitation and emission wavelengths for through‐cranium imaging, and demonstrates that near‐infrared emissive nanosensors can be photoexcited using a two‐photon 1560 nm excitation source. Dopamine‐sensitive nanosensors can undergo two‐photon excitation, and provide chirality‐dependent responses selective for dopamine with fluorescent turn‐on responses varying between 20% and 350%. The two‐photon absorption cross‐section and quantum yield of dopamine nanosensors are further calculated, and a two‐photon power law relationship for the nanosensor excitation process is confirmed. Finally, the improved image quality of the nanosensors embedded 2‐mm‐deep into a brain‐mimetic tissue phantom is shown, whereby one‐photon excitation yields 42% scattering, in contrast to 4% scattering when the same object is imaged under two‐photon excitation. The approach overcomes traditional limitations in deep‐tissue fluorescence microscopy, and can enable neurotransmitter imaging in the biologically relevant milieu of the intact and living brain.

    View Publication Page