Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Bock Lab / Publications
general_search_page-panel_pane_1 | views_panes

17 Publications

Showing 11-17 of 17 results
Bock Lab
10/01/13 | Optimizing the quantity/quality trade-off in connectome inference.
Priebe CE, Vogelstein J, Bock D
Communications in Statistics-Theory and Methods. 2013 Oct;42:3455-62. doi: 10.1080/03610926.2011.630768

We demonstrate a meaningful prospective power analysis for an (admittedly idealized) illustrative connectome inference task. Modeling neurons as vertices and synapses as edges in a simple random graph model, we optimize the trade-off between the number of (putative) edges identified and the accuracy of the edge identification procedure. We conclude that explicit analysis of the quantity/quality trade-off is imperative for optimal neuroscientific experimental design. In particular, identifying edges faster/more cheaply, but with more error, can yield superior inferential performance.

View Publication Page
Bock Lab
06/18/13 | The Open Connectome Project Data Cluster: Scalable analysis and vision for high-throughput neuroscience.
Burns R, Roncal WG, Kleissas D, Lillaney K, Manavalan P, Perlman E, Berger DR, Bock DD, Chung K, Grosenick L, Kasthuri N, Weiler NC, Deisseroth K, Kazhdan M, Lichtman J, Reid RC, Smith SJ, Szalay AS, Vogelstein JT, Vogelstein RJ
Scientific and Statistical Database Management: International Conference, SSDBM ... : Proceedings. International Conference on Scientific and Statistical Database Management. 2013 Jun 18:. doi: 10.1145/2484838.2484870

We describe a scalable database cluster for the spatial analysis and annotation of high-throughput brain imaging data, initially for 3-d electron microscopy image stacks, but for time-series and multi-channel data as well. The system was designed primarily for workloads that build connectomes- neural connectivity maps of the brain-using the parallel execution of computer vision algorithms on high-performance compute clusters. These services and open-science data sets are publicly available at openconnecto.me. The system design inherits much from NoSQL scale-out and data-intensive computing architectures. We distribute data to cluster nodes by partitioning a spatial index. We direct I/O to different systems-reads to parallel disk arrays and writes to solid-state storage-to avoid I/O interference and maximize throughput. All programming interfaces are RESTful Web services, which are simple and stateless, improving scalability and usability. We include a performance evaluation of the production system, highlighting the effec-tiveness of spatial data organization.

View Publication Page
Bock Lab
02/01/12 | Volume electron microscopy for neuronal circuit reconstruction.
Briggman KL, Bock DD
Current Opinion in Neurobiology. 2012 Feb;22(1):154-61. doi: 10.1016/j.conb.2011.10.022

The last decade has seen a rapid increase in the number of tools to acquire volume electron microscopy (EM) data. Several new scanning EM (SEM) imaging methods have emerged, and classical transmission EM (TEM) methods are being scaled up and automated. Here we summarize the new methods for acquiring large EM volumes, and discuss the tradeoffs in terms of resolution, acquisition speed, and reliability. We then assess each method’s applicability to the problem of reconstructing anatomical connectivity between neurons, considering both the current capabilities and future prospects of the method. Finally, we argue that neuronal ’wiring diagrams’ are likely necessary, but not sufficient, to understand the operation of most neuronal circuits: volume EM imaging will likely find its best application in combination with other methods in neuroscience, such as molecular biology, optogenetics, and physiology.

View Publication Page
Bock Lab
11/09/11 | Large-scale automated histology in the pursuit of connectomes.
Kleinfeld D, Bharioke A, Blinder P, Bock DD, Briggman KL, Chklovskii DB, Denk W, Helmstaedter M, Kaufhold JP, Lee WA, Meyer HS, Micheva KD, Oberlaender M, Prohaska S, Reid RC, Smith SJ, Takemura S, Tsai PS, Sakmann B
The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 2011 Nov 9;31(45):16125-38. doi: 10.1523/JNEUROSCI.4077-11.2011

How does the brain compute? Answering this question necessitates neuronal connectomes, annotated graphs of all synaptic connections within defined brain areas. Further, understanding the energetics of the brain’s computations requires vascular graphs. The assembly of a connectome requires sensitive hardware tools to measure neuronal and neurovascular features in all three dimensions, as well as software and machine learning for data analysis and visualization. We present the state of the art on the reconstruction of circuits and vasculature that link brain anatomy and function. Analysis at the scale of tens of nanometers yields connections between identified neurons, while analysis at the micrometer scale yields probabilistic rules of connection between neurons and exact vascular connectivity.

View Publication Page
Bock Lab
03/10/11 | Network anatomy and in vivo physiology of visual cortical neurons.
Bock DD, Lee WA, Kerlin AM, Andermann ML, Hood G, Wetzel AW, Yurgenson S, Soucy ER, Kim HS, Reid RC
Nature. 2011 Mar 10;471(7337):177-82. doi: 10.1038/nature09802

In the cerebral cortex, local circuits consist of tens of thousands of neurons, each of which makes thousands of synaptic connections. Perhaps the biggest impediment to understanding these networks is that we have no wiring diagrams of their interconnections. Even if we had a partial or complete wiring diagram, however, understanding the network would also require information about each neuron’s function. Here we show that the relationship between structure and function can be studied in the cortex with a combination of in vivo physiology and network anatomy. We used two-photon calcium imaging to characterize a functional property–the preferred stimulus orientation–of a group of neurons in the mouse primary visual cortex. Large-scale electron microscopy of serial thin sections was then used to trace a portion of these neurons’ local network. Consistent with a prediction from recent physiological experiments, inhibitory interneurons received convergent anatomical input from nearby excitatory neurons with a broad range of preferred orientations, although weak biases could not be rejected.

View Publication Page
Bock Lab
01/01/09 | Accelerating feature based registration using the Johnson-Lindenstrauss Lemma.
Akselrod-Ballin A, Bock D, Reid RC, Warfield SK
Medical Image Computing and Computer-Assisted Intervention: MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention. 2009;12:632-9

We introduce an efficient search strategy to substantially accelerate feature based registration. Previous feature based registration algorithms often use truncated search strategies in order to achieve small computation times. Our new accelerated search strategy is based on the realization that the search for corresponding features can be dramatically accelerated by utilizing Johnson-Lindenstrauss dimension reduction. Order of magnitude calculations for the search strategy we propose here indicate that the algorithm proposed is more than a million times faster than previously utilized naive search strategies, and this advantage in speed is directly translated into an advantage in accuracy as the fast speed enables more comparisons to be made in the same amount of time. We describe the accelerated scheme together with a full complexity analysis. The registration algorithm was applied to large transmission electron microscopy (TEM) images of neural ultrastructure. Our experiments demonstrate that our algorithm enables alignment of TEM images with increased accuracy and efficiency compared to previous algorithms.

View Publication Page
Bock Lab
01/01/07 | Alignment of large image series using cubic B-splines tessellation: application to transmission electron microscopy data.
Dauguet J, Bock D, Reid RC, Warfield SK
Medical Image Computing and Computer-Assisted Intervention: MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention. 2007;10:710-7

3D reconstruction from serial 2D microscopy images depends on non-linear alignment of serial sections. For some structures, such as the neuronal circuitry of the brain, very large images at very high resolution are necessary to permit reconstruction. These very large images prevent the direct use of classical registration methods. We propose in this work a method to deal with the non-linear alignment of arbitrarily large 2D images using the finite support properties of cubic B-splines. After initial affine alignment, each large image is split into a grid of smaller overlapping sub-images, which are individually registered using cubic B-splines transformations. Inside the overlapping regions between neighboring sub-images, the coefficients of the knots controlling the B-splines deformations are blended, to create a virtual large grid of knots for the whole image. The sub-images are resampled individually, using the new coefficients, and assembled together into a final large aligned image. We evaluated the method on a series of large transmission electron microscopy images and our results indicate significant improvements compared to both manual and affine alignment.

View Publication Page