Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_secondary_menu | block
More in this page
janelia7_blocks-janelia7_fake_breadcrumb | block
Dickson Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

2 Publications

Showing 1-2 of 2 results
Your Criteria:
    09/09/15 | Connecting neural codes with behavior in the auditory system of Drosophila.
    Clemens J, Girardin CC, Coen P, Guan X, Dickson BJ, Murthy M
    Neuron. 2015 Sep 9;87(6):1332-43. doi: 10.1016/j.neuron.2015.08.014

    Brains are optimized for processing ethologically relevant sensory signals. However, few studies have characterized the neural coding mechanisms that underlie the transformation from natural sensory information to behavior. Here, we focus on acoustic communication in Drosophila melanogaster and use computational modeling to link natural courtship song, neuronal codes, and female behavioral responses to song. We show that melanogaster females are sensitive to long timescale song structure (on the order of tens of seconds). From intracellular recordings, we generate models that recapitulate neural responses to acoustic stimuli. We link these neural codes with female behavior by generating model neural responses to natural courtship song. Using a simple decoder, we predict female behavioral responses to the same song stimuli with high accuracy. Our modeling approach reveals how long timescale song features are represented by the Drosophila brain and how neural representations can be decoded to generate behavioral selectivity for acoustic communication signals.

    View Publication Page
    02/02/15 | Neuronal control of Drosophila walking direction.
    Bidaye SS, Machacek C, Wu Y, Dickson BJ
    Science. 2014 Apr 4;344(6179):97-101. doi: 10.1126/science.1249964

    Most land animals normally walk forward but switch to backward walking upon sensing an obstacle or danger in the path ahead. A change in walking direction is likely to be triggered by descending "command" neurons from the brain that act upon local motor circuits to alter the timing of leg muscle activation. Here we identify descending neurons for backward walking in Drosophila--the MDN neurons. MDN activity is required for flies to walk backward when they encounter an impassable barrier and is sufficient to trigger backward walking under conditions in which flies would otherwise walk forward. We also identify ascending neurons, MAN, that promote persistent backward walking, possibly by inhibiting forward walking. These findings provide an initial glimpse into the circuits and logic that control walking direction in Drosophila.

    View Publication Page