Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_secondary_menu | block
More in this page
janelia7_blocks-janelia7_fake_breadcrumb | block
Dickson Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

2 Publications

Showing 1-2 of 2 results
Your Criteria:
    05/03/11 | Robo-3--mediated repulsive interactions guide R8 axons during Drosophila visual system development.
    Pappu KS, Morey M, Nern A, Spitzweck B, Dickson BJ, Zipursky SL
    Proc Natl Acad Sci U S A. 2011 May 03;108(18):7571-6. doi: 10.1073/pnas.1103419108

    The formation of neuronal connections requires the precise guidance of developing axons toward their targets. In the Drosophila visual system, photoreceptor neurons (R cells) project from the eye into the brain. These cells are grouped into some 750 clusters comprised of eight photoreceptors or R cells each. R cells fall into three classes: R1 to R6, R7, and R8. Posterior R8 cells are the first to project axons into the brain. How these axons select a specific pathway is not known. Here, we used a microarray-based approach to identify genes expressed in R8 neurons as they extend into the brain. We found that Roundabout-3 (Robo3), an axon-guidance receptor, is expressed specifically and transiently in R8 growth cones. In wild-type animals, posterior-most R8 axons extend along a border of glial cells demarcated by the expression of Slit, the secreted ligand of Robo3. In contrast, robo3 mutant R8 axons extend across this border and fasciculate inappropriately with other axon tracts. We demonstrate that either Robo1 or Robo2 rescues the robo3 mutant phenotype when each is knocked into the endogenous robo3 locus separately, indicating that R8 does not require a function unique to the Robo3 paralog. However, persistent expression of Robo3 in R8 disrupts the layer-specific targeting of R8 growth cones. Thus, the transient cell-specific expression of Robo3 plays a crucial role in establishing neural circuits in the Drosophila visual system by selectively regulating pathway choice for posterior-most R8 growth cones.

    View Publication Page
    02/10/11 | Neuronal control of Drosophila courtship song.
    von Philipsborn AC, Liu T, Yu JY, Masser C, Bidaye SS, Dickson BJ
    Neuron. 2011 Feb 10;69:509-22. doi: 10.1016/j.neuron.2011.01.011

    The courtship song of the Drosophila male serves as a genetically tractable model for the investigation of the neural mechanisms of decision-making, action selection, and motor pattern generation. Singing has been causally linked to the activity of the set of neurons that express the sex-specific fru transcripts, but the specific neurons involved have not been identified. Here we identify five distinct classes of fru neuron that trigger or compose the song. Our data suggest that P1 and pIP10 neurons in the brain mediate the decision to sing, and to act upon this decision, while the thoracic neurons dPR1, vPR6, and vMS11 are components of a central pattern generator that times and shapes the song’s pulses. These neurons are potentially connected in a functional circuit, with the descending pIP10 neuron linking the brain and thoracic song centers. Sexual dimorphisms in each of these neurons may explain why only males sing.

    View Publication Page