Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Druckmann Lab / Publications
general_search_page-panel_pane_1 | views_panes

4 Publications

Showing 1-4 of 4 results
Your Criteria:
    Druckmann LabMagee Lab
    10/22/18 | Active dendritic integration and mixed neocortical network representations during an adaptive sensing behavior.
    Ranganathan GN, Apostolides PF, Harnett MT, Xu N, Druckmann S, Magee JC
    Nature Neuroscience. 2018 Oct 22;21(11):1583-90. doi: 10.1038/s41593-018-0254-6

    Animals strategically scan the environment to form an accurate perception of their surroundings. Here we investigated the neuronal representations that mediate this behavior. Ca imaging and selective optogenetic manipulation during an active sensing task reveals that layer 5 pyramidal neurons in the vibrissae cortex produce a diverse and distributed representation that is required for mice to adapt their whisking motor strategy to changing sensory cues. The optogenetic perturbation degraded single-neuron selectivity and network population encoding through a selective inhibition of active dendritic integration. Together the data indicate that active dendritic integration in pyramidal neurons produces a nonlinearly mixed network representation of joint sensorimotor parameters that is used to transform sensory information into motor commands during adaptive behavior. The prevalence of the layer 5 cortical circuit motif suggests that this is a general circuit computation.

    View Publication Page
    Druckmann Lab
    05/04/18 | Schaffer collateral inputs to CA1 excitatory and inhibitory neurons follow different connectivity rules.
    Kwon O, Feng L, Druckmann S, Kim J
    The Journal of Neuroscience : the official journal of the Society for Neuroscience. 2018 May 04;38(22):5140-52. doi: 10.1523/JNEUROSCI.0155-18.2018

    Neural circuits, governed by a complex interplay between excitatory and inhibitory neurons, are the substrate for information processing, and the organization of synaptic connectivity in neural network is an important determinant of circuit function. Here, we analyzed the fine structure of connectivity in hippocampal CA1 excitatory and inhibitory neurons innervated by Schaffer collaterals (SCs) using mGRASP in male mice. Our previous study revealed spatially structured synaptic connectivity between CA3-CA1 pyramidal cells (PCs). Surprisingly, parvalbumin-positive interneurons (PVs) showed a significantly more random pattern spatial structure. Notably, application of Peters' Rule for synapse prediction by random overlap between axons and dendrites enhanced structured connectivity in PCs, but, by contrast, made the connectivity pattern in PVs more random. In addition, PCs in a deep sublayer of striatum pyramidale appeared more highly structured than PCs in superficial layers, and little or no sublayer specificity was found in PVs. Our results show that CA1 excitatory PCs and inhibitory PVs innervated by the same SC inputs follow different connectivity rules. The different organizations of fine scale structured connectivity in hippocampal excitatory and inhibitory neurons provide important insights into the development and functions of neural networks.Understanding how neural circuits generate behavior is one of the central goals of neuroscience. An important component of this endeavor is the mapping of fine-scale connection patterns that underlie, and help us infer, signal processing in the brain. Here, using our recently developed synapse detection technology (mGRASP and neuTube), we provide detailed profiles of synaptic connectivity in excitatory (CA1 pyramidal) and inhibitory (CA1 parvalbumin-positive) neurons innervated by the same presynaptic inputs (CA3 Schaffer collaterals). Our results reveal that these two types of CA1 neurons follow different connectivity patterns. Our new evidence for differently structured connectivity at a fine scale in hippocampal excitatory and inhibitory neurons provides a better understanding of hippocampal networks and will guide theoretical and experimental studies.

    View Publication Page
    Druckmann LabPodgorski Lab
    04/16/18 | Multiplicative updates for optimization problems with dynamics.
    Abbas Kazemipour , Behtash Babadi , wu m, Podgorski K, Shaul Druckmann
    IEEE Xplore. 2018 Apr 16:. doi: 10.1109/ACSSC.2017.8335723

    We consider the problem of optimizing general convex objective functions with nonnegativity constraints. Using the Karush-Kuhn-Tucker (KKT) conditions for the nonnegativity constraints we will derive fast multiplicative update rules for several problems of interest in signal processing, including non-negative deconvolution, point-process smoothing, ML estimation for Poisson Observations, nonnegative least squares and nonnegative matrix factorization (NMF). Our algorithm can also account for temporal and spatial structure and regularization. We will analyze the performance of our algorithm on simultaneously recorded neuronal calcium imaging and electrophysiology data.

    View Publication Page
    Romani LabSvoboda LabDruckmann Lab
    04/25/18 | Low-dimensional and monotonic preparatory activity in mouse anterior lateral motor cortex.
    Inagaki HK, Inagaki M, Romani S, Svoboda K
    The Journal of Neuroscience : the official journal of the Society for Neuroscience. 2018 Apr 25;38(17):4163-85. doi: 10.1523/JNEUROSCI.3152-17.2018

    Neurons in multiple brain regions fire trains of action potentials anticipating specific movements, but this 'preparatory activity' has not been systematically compared across behavioral tasks. We compared preparatory activity in auditory and tactile delayed-response tasks in male mice. Skilled, directional licking was the motor output. The anterior lateral motor cortex (ALM) is necessary for motor planning in both tasks. Multiple features of ALM preparatory activity during the delay epoch were similar across tasks. First, majority of neurons showed direction-selective activity and spatially intermingled neurons were selective for either movement direction. Second, many cells showed mixed coding of sensory stimulus and licking direction, with a bias toward licking direction. Third, delay activity was monotonic and low-dimensional. Fourth, pairs of neurons with similar direction selectivity showed high spike-count correlations. Our study forms the foundation to analyze the neural circuit mechanisms underlying preparatory activity in a genetically tractable model organism.Short-term memories link events separated in time. Neurons in frontal cortex fire trains of action potentials anticipating specific movements, often seconds before the movement. This 'preparatory activity' has been observed in multiple brain regions, but has rarely been compared systematically across behavioral tasks in the same brain region. To identify common features of preparatory activity, we developed and compared preparatory activity in auditory and tactile delayed-response tasks in mice. The same cortical area is necessary for both tasks. Multiple features of preparatory activity, measured with high-density silicon probes, were similar across tasks. We find that preparatory activity is low-dimensional and monotonic. Our study forms the foundation to analyze the circuit mechanisms underlying preparatory activity in a genetically tractable model organism.

    View Publication Page