Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_secondary_menu | block
janelia7_blocks-janelia7_fake_breadcrumb | block
Dudman Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

2 Publications

Showing 1-2 of 2 results
Your Criteria:
    12/16/04 | Individual differences in trait anxiety predict the response of the basolateral amygdala to unconsciously processed fearful faces.
    Etkin A, Klemenhagen KC, Dudman JT, Rogan MT, Hen R, Kandel ER, Hirsch J
    Neuron. 2004 Dec 16;44(6):1043-55. doi: 10.3389/fnana.2010.00147

    Responses to threat-related stimuli are influenced by conscious and unconscious processes, but the neural systems underlying these processes and their relationship to anxiety have not been clearly delineated. Using fMRI, we investigated the neural responses associated with the conscious and unconscious (backwardly masked) perception of fearful faces in healthy volunteers who varied in threat sensitivity (Spielberger trait anxiety scale). Unconscious processing modulated activity only in the basolateral subregion of the amygdala, while conscious processing modulated activity only in the dorsal amygdala (containing the central nucleus). Whereas activation of the dorsal amygdala by conscious stimuli was consistent across subjects and independent of trait anxiety, activity in the basolateral amygdala to unconscious stimuli, and subjects’ reaction times, were predicted by individual differences in trait anxiety. These findings provide a biological basis for the unconscious emotional vigilance characteristic of anxiety and a means for investigating the mechanisms and efficacy of treatments for anxiety.

    View Publication Page
    11/24/04 | L-type Ca2+ channel blockers promote Ca2+ accumulation when dopamine receptors are activated in striatal neurons.
    Eaton ME, Macías W, Youngs RM, Rajadhyaksha A, Dudman JT, Konradi C
    Brain Research. Molecular Brain Research. 2004 Nov 24;131(1-2):65-72. doi: 10.3389/fnana.2010.00147

    Dopamine (DA) receptor-mediated signal transduction and gene expression play a central role in many brain disorders from schizophrenia to Parkinson’s disease to addiction. While trying to evaluate the role of L-type Ca2+ channels in dopamine D1 receptor-mediated phosphorylation of the transcription factor cyclic AMP response element-binding protein (CREB), we found that activation of dopamine D1 receptors alters the properties of L-type Ca2+ channel inhibitors and turns them into facilitators of Ca2+ influx. In D1 receptor-stimulated neurons, L-type Ca2+ channel blockers promote cytosolic Ca2+ accumulation. This leads to the activation of a molecular signal transduction pathway and CREB phosphorylation. In the absence of dopamine receptor stimulation, L-type Ca2+ channel blockers inhibit CREB phosphorylation. The effect of dopamine on L-type Ca2+ channel blockers is dependent on protein kinase A (PKA), suggesting that protein phosphorylation plays a role in this phenomenon. Because of the adverse effect of activated dopamine receptors on L-type Ca2+ channel blocker action, the role of L-type Ca2+ channels in the dopamine D1 receptor signal transduction pathway cannot be assessed with pharmacological tools. However, with antisense technology, we demonstrate that L-type Ca2+ channels contribute to D1 receptor-mediated CREB phosphorylation. We conclude that the D1 receptor signal transduction pathway depends on L-type Ca2+ channels to mediate CREB phosphorylation.

    View Publication Page