Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_secondary_menu | block
janelia7_blocks-janelia7_fake_breadcrumb | block
Fitzgerald Lab / Publications
general_search_page-panel_pane_1 | views_panes

24 Publications

Showing 1-10 of 24 results
12/22/22 | A brainstem integrator for self-localization and positional homeostasis
Yang E, Zwart MF, Rubinov M, James B, Wei Z, Narayan S, Vladimirov N, Mensh BD, Fitzgerald JE, Ahrens MB
Cell. 2022 Dec 22;185(26):5011-5027.e20. doi: 10.1101/2021.11.26.468907

To accurately track self-location, animals need to integrate their movements through space. In amniotes, representations of self-location have been found in regions such as the hippocampus. It is unknown whether more ancient brain regions contain such representations and by which pathways they may drive locomotion. Fish displaced by water currents must prevent uncontrolled drift to potentially dangerous areas. We found that larval zebrafish track such movements and can later swim back to their earlier location. Whole-brain functional imaging revealed the circuit enabling this process of positional homeostasis. Position-encoding brainstem neurons integrate optic flow, then bias future swimming to correct for past displacements by modulating inferior olive and cerebellar activity. Manipulation of position-encoding or olivary neurons abolished positional homeostasis or evoked behavior as if animals had experienced positional shifts. These results reveal a multiregional hindbrain circuit in vertebrates for optic flow integration, memory of self-location, and its neural pathway to behavior.Competing Interest StatementThe authors have declared no competing interest.

View Publication Page
12/10/22 | Reward expectations direct learning and drive operant matching in Drosophila
Adithya E. Rajagopalan , Ran Darshan , Karen L. Hibbard , James E. Fitzgerald , Glenn C. Turner
bioRxiv. 2022 Dec 10:. doi: 10.1101/2022.05.24.493252

Foraging animals must use decision-making strategies that dynamically adapt to the changing availability of rewards in the environment. A wide diversity of animals do this by distributing their choices in proportion to the rewards received from each option, Herrnstein’s operant matching law. Theoretical work suggests an elegant mechanistic explanation for this ubiquitous behavior, as operant matching follows automatically from simple synaptic plasticity rules acting within behaviorally relevant neural circuits. However, no past work has mapped operant matching onto plasticity mechanisms in the brain, leaving the biological relevance of the theory unclear. Here we discovered operant matching in Drosophila and showed that it requires synaptic plasticity that acts in the mushroom body and incorporates the expectation of reward. We began by developing a novel behavioral paradigm to measure choices from individual flies as they learn to associate odor cues with probabilistic rewards. We then built a model of the fly mushroom body to explain each fly’s sequential choice behavior using a family of biologically-realistic synaptic plasticity rules. As predicted by past theoretical work, we found that synaptic plasticity rules could explain fly matching behavior by incorporating stimulus expectations, reward expectations, or both. However, by optogenetically bypassing the representation of reward expectation, we abolished matching behavior and showed that the plasticity rule must specifically incorporate reward expectations. Altogether, these results reveal the first synaptic level mechanisms of operant matching and provide compelling evidence for the role of reward expectation signals in the fly brain.

View Publication Page
12/09/22 | Exact learning dynamics of deep linear networks with prior knowledge
Lukas Braun , Clémentine Dominé , James Fitzgerald , Andrew Saxe
Neural Information Processing Systems:

Learning in deep neural networks is known to depend critically on the knowledge embedded in the initial network weights. However, few theoretical results have precisely linked prior knowledge to learning dynamics. Here we derive exact solutions to the dynamics of learning with rich prior knowledge in deep linear networks by generalising Fukumizu's matrix Riccati solution \citep{fukumizu1998effect}. We obtain explicit expressions for the evolving network function, hidden representational similarity, and neural tangent kernel over training for a broad class of initialisations and tasks. The expressions reveal a class of task-independent initialisations that radically alter learning dynamics from slow non-linear dynamics to fast exponential trajectories while converging to a global optimum with identical representational similarity, dissociating learning trajectories from the structure of initial internal representations. We characterise how network weights dynamically align with task structure, rigorously justifying why previous solutions successfully described learning from small initial weights without incorporating their fine-scale structure. Finally, we discuss the implications of these findings for continual learning, reversal learning and learning of structured knowledge. Taken together, our results provide a mathematical toolkit for understanding the impact of prior knowledge on deep learning.

View Publication Page
06/29/22 | A geometric framework to predict structure from function in neural networks
Biswas T, Fitzgerald JE
Physical Review Research. 2022 Jun 29;4(2):023255. doi: 10.1103/PhysRevResearch.4.023255

Neural computation in biological and artificial networks relies on nonlinear synaptic integration. The structural connectivity matrix of synaptic weights between neurons is a critical determinant of overall network function. However, quantitative links between neural network structure and function are complex and subtle. For example, many networks can give rise to similar functional responses, and the same network can function differently depending on context. Whether certain patterns of synaptic connectivity are required to generate specific network-level computations is largely unknown. Here we introduce a geometric framework for identifying synaptic connections required by steady-state responses in recurrent networks of rectified-linear neurons. Assuming that the number of specified response patterns does not exceed the number of input synapses, we analytically calculate all feedforward and recurrent connectivity matrices that can generate the specified responses from the network inputs. We then use this analytical characterization to rigorously analyze the solution space geometry and derive certainty conditions guaranteeing a non-zero synapse between neurons. Numerical simulations of feedforward and recurrent networks verify our analytical results. Our theoretical framework could be applied to neural activity data to make anatomical predictions that follow generally from the model architecture. It thus provides novel opportunities for discerning what model features are required to accurately relate neural network structure and function.

View Publication Page
10/15/21 | Organizing memories for generalization in complementary learning systems.
Weinan Sun , Madhu Advani , Nelson Spruston , Andrew Saxe , James E. Fitzgerald
bioRxiv. 2021 Oct 15:. doi: https://doi.org/10.1101/2021.10.13.463791

Our ability to remember the past is essential for guiding our future behavior. Psychological and neurobiological features of declarative memories are known to transform over time in a process known as systems consolidation. While many theories have sought to explain the time-varying role of hippocampal and neocortical brain areas, the computational principles that govern these transformations remain unclear. Here we propose a theory of systems consolidation in which hippocampal-cortical interactions serve to optimize generalizations that guide future adaptive behavior. We use mathematical analysis of neural network models to characterize fundamental performance tradeoffs in systems consolidation, revealing that memory components should be organized according to their predictability. The theory shows that multiple interacting memory systems can outperform just one, normatively unifying diverse experimental observations and making novel experimental predictions. Our results suggest that the psychological taxonomy and neurobiological organization of declarative memories reflect a system optimized for behaving well in an uncertain future.

View Publication Page
11/25/20 | Theoretical principles for illuminating sensorimotor processing with brain-wide neuronal recordings.
Biswas T, Bishop WE, Fitzgerald JE
Current Opinion in Neurobiology. 2020 Nov 25;65:138-145. doi: 10.1016/j.conb.2020.10.021

Modern recording techniques now permit brain-wide sensorimotor circuits to be observed at single neuron resolution in small animals. Extracting theoretical understanding from these recordings requires principles that organize findings and guide future experiments. Here we review theoretical principles that shed light onto brain-wide sensorimotor processing. We begin with an analogy that conceptualizes principles as streetlamps that illuminate the empirical terrain, and we illustrate the analogy by showing how two familiar principles apply in new ways to brain-wide phenomena. We then focus the bulk of the review on describing three more principles that have wide utility for mapping brain-wide neural activity, making testable predictions from highly parameterized mechanistic models, and investigating the computational determinants of neuronal response patterns across the brain.

View Publication Page
06/22/20 | A neural representation of naturalistic motion-guided behavior in the zebrafish brain.
Yildizoglu T, Riegler C, Fitzgerald JE, Portugues R
Current Biology. 2020 Jun 22;30(12):2321-33. doi: 10.1016/j.cub.2020.04.043

All animals must transform ambiguous sensory data into successful behavior. This requires sensory representations that accurately reflect the statistics of natural stimuli and behavior. Multiple studies show that visual motion processing is tuned for accuracy under naturalistic conditions, but the sensorimotor circuits extracting these cues and implementing motion-guided behavior remain unclear. Here we show that the larval zebrafish retina extracts a diversity of naturalistic motion cues, and the retinorecipient pretectum organizes these cues around the elements of behavior. We find that higher-order motion stimuli, gliders, induce optomotor behavior matching expectations from natural scene analyses. We then image activity of retinal ganglion cell terminals and pretectal neurons. The retina exhibits direction-selective responses across glider stimuli, and anatomically clustered pretectal neurons respond with magnitudes matching behavior. Peripheral computations thus reflect natural input statistics, whereas central brain activity precisely codes information needed for behavior. This general principle could organize sensorimotor transformations across animal species.

View Publication Page
03/24/20 | Correcting for physical distortions in visual stimuli improves reproducibility in zebrafish neuroscience.
Dunn TW, Fitzgerald JE
eLife. 2020 Mar 24;9:. doi: 10.7554/eLife.53684

Breakthrough technologies for monitoring and manipulating single-neuron activity provide unprecedented opportunities for whole-brain neuroscience in larval zebrafish1–9. Understanding the neural mechanisms of visually guided behavior also requires precise stimulus control, but little prior research has accounted for physical distortions that result from refraction and reflection at an air-water interface that usually separates the projected stimulus from the fish10–12. Here we provide a computational tool that transforms between projected and received stimuli in order to detect and control these distortions. The tool considers the most commonly encountered interface geometry, and we show that this and other common configurations produce stereotyped distortions. By correcting these distortions, we reduced discrepancies in the literature concerning stimuli that evoke escape behavior13,14, and we expect this tool will help reconcile other confusing aspects of the literature. This tool also aids experimental design, and we illustrate the dangers that uncorrected stimuli pose to receptive field mapping experiments.

View Publication Page
10/15/19 | Asymmetric ON-OFF processing of visual motion cancels variability induced by the structure of natural scenes.
Chen J, Mandel HB, Fitzgerald JE, Clark DA
eLife. 2019 Oct 15;8:. doi: 10.7554/eLife.47579

Animals detect motion using a variety of visual cues that reflect regularities in the natural world. Experiments in animals across phyla have shown that motion percepts incorporate both pairwise and triplet spatiotemporal correlations that could theoretically benefit motion computation. However, it remains unclear how visual systems assemble these cues to build accurate motion estimates. Here we used systematic behavioral measurements of fruit fly motion perception to show how flies combine local pairwise and triplet correlations to reduce variability in motion estimates across natural scenes. By generating synthetic images with statistics controlled by maximum entropy distributions, we show that the triplet correlations are useful only when images have light-dark asymmetries that mimic natural ones. This suggests that asymmetric ON-OFF processing is tuned to the particular statistics of natural scenes. Since all animals encounter the world's light-dark asymmetries, many visual systems are likely to use asymmetric ON-OFF processing to improve motion estimation.

View Publication Page
01/07/19 | Threshold-based ordering of sequential actions during Drosophila courtship.
McKellar CE, Lillvis JL, Bath DE, Fitzgerald JE, Cannon JG, Simpson JH, Dickson BJ
Current Biology : CB. 2019 Jan 07;29(3):426-34. doi: 10.1016/j.cub.2018.12.019

Goal-directed animal behaviors are typically composed of sequences of motor actions whose order and timing are critical for a successful outcome. Although numerous theoretical models for sequential action generation have been proposed, few have been supported by the identification of control neurons sufficient to elicit a sequence. Here, we identify a pair of descending neurons that coordinate a stereotyped sequence of engagement actions during Drosophila melanogaster male courtship behavior. These actions are initiated sequentially but persist cumulatively, a feature not explained by existing models of sequential behaviors. We find evidence consistent with a ramp-to-threshold mechanism, in which increasing neuronal activity elicits each action independently at successively higher activity thresholds.

View Publication Page