Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_secondary_menu | block
janelia7_blocks-janelia7_fake_breadcrumb | block
Fitzgerald Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

2 Publications

Showing 1-2 of 2 results
Your Criteria:
    10/31/18 | The neuronal basis of an illusory motion percept is explained by decorrelation of parallel motion pathways.
    Salazar-Gatzimas E, Agrochao M, Fitzgerald JE, Clark DA
    Current Biology : CB. 2018 Oct 31;28(23):3748-78. doi: 10.1016/j.cub.2018.10.007

    Both vertebrates and invertebrates perceive illusory motion, known as "reverse-phi," in visual stimuli that contain sequential luminance increments and decrements. However, increment (ON) and decrement (OFF) signals are initially processed by separate visual neurons, and parallel elementary motion detectors downstream respond selectively to the motion of light or dark edges, often termed ON- and OFF-edges. It remains unknown how and where ON and OFF signals combine to generate reverse-phi motion signals. Here, we show that each of Drosophila's elementary motion detectors encodes motion by combining both ON and OFF signals. Their pattern of responses reflects combinations of increments and decrements that co-occur in natural motion, serving to decorrelate their outputs. These results suggest that the general principle of signal decorrelation drives the functional specialization of parallel motion detection channels, including their selectivity for moving light or dark edges.

    View Publication Page
    10/25/18 | Long-Term Consolidation of Ensemble Neural Plasticity Patterns in Hippocampal Area CA1.
    Attardo A, Lu J, Kawashima T, Okuno H, Fitzgerald JE, Bito H, Schnitzer MJ
    Cell reports. 2018 Oct 16;25(3):640-650.e2. doi: 10.1016/j.celrep.2018.09.064

    Neural network remodeling underpins the ability to remember life experiences, but little is known about the long-term plasticity of neural populations. To study how the brain encodes episodic events, we used time-lapse two-photon microscopy and a fluorescent reporter of neural plasticity based on an enhanced form of the synaptic activity-responsive element (E-SARE) within the Arc promoter to track thousands of CA1 hippocampal pyramidal cells over weeks in mice that repeatedly encountered different environments. Each environment evokes characteristic patterns of ensemble neural plasticity, but with each encounter, the set of activated cells gradually evolves. After repeated exposures, the plasticity patterns evoked by an individual environment progressively stabilize. Compared with young adults, plasticity patterns in aged mice are less specific to individual environments and less stable across repeat experiences. Long-term consolidation of hippocampal plasticity patterns may support long-term memory formation, whereas weaker consolidation in aged subjects might reflect declining memory function.

    View Publication Page