Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Gonen Lab / Publications
general_search_page-panel_pane_1 | views_panes

11 Publications

Showing 1-10 of 11 results
Your Criteria:
    Gonen Lab
    12/27/17 | Common fibrillar spines of amyloid-β and human Islet Amyloid Polypeptide revealed by Micro Electron Diffraction and inhibitors developed using structure-based design.
    Krotee P, Griner SL, Sawaya MR, Cascio D, Rodriguez JA, Shi D, Philipp S, Murray K, Saelices L, Lee J, Seidler P, Glabe CG, Jiang L, Gonen T, Eisenberg DS
    The Journal of Biological Chemistry. 2017 Dec 27;293(8):2888-902. doi: 10.1074/jbc.M117.806109

    Amyloid-β (Aβ) and human islet amyloid polypeptide (hIAPP) aggregate to form amyloid fibrils that deposit in tissues, and are associated with Alzheimer's disease (AD) and Type-II Diabetes (T2D), respectively. Individuals with T2D have an increased risk of developing AD, and conversely, AD patients have an increased risk of developing T2D. Evidence suggests that this link between AD and T2D might originate from a structural similarity between aggregates of Aβ and hIAPP. Using the cryoEM method Micro-Electron Diffraction (MicroED) we determined the atomic structures of 11-residue segments from both Aβ and hIAPP, termed Aβ 24-34 WT and hIAPP 19-29 S20G, with 64% sequence similarity. We observe a high degree of structural similarity between their backbone atoms (0.96 Å RMSD). Moreover, fibrils of these segments induce amyloid formation through self- and cross-seeding. Furthermore, inhibitors designed for one segment show cross-efficacy for full-length Aβ and hIAPP and reduce cytotoxicity of both proteins, though by apparently blocking different cytotoxic mechanisms. The similarity of the atomic structures of Aβ 24-34 WT and hIAPP 19-29 S20G offers a molecular model for cross-seeding between Aβ and hIAPP.

    View Publication Page
    Gonen Lab
    11/20/17 | Structure-based inhibitors of tau aggregation.
    Seidler PM, Boyer DR, Rodriguez JA, Sawaya MR, Cascio D, Murray K, Gonen T, Eisenberg DS
    Nature Chemistry. 2017 Nov 20:. doi: 10.1038/nchem.2889

    Aggregated tau protein is associated with over 20 neurological disorders, which include Alzheimer's disease. Previous work has shown that tau's sequence segments VQIINK and VQIVYK drive its aggregation, but inhibitors based on the structure of the VQIVYK segment only partially inhibit full-length tau aggregation and are ineffective at inhibiting seeding by full-length fibrils. Here we show that the VQIINK segment is the more powerful driver of tau aggregation. Two structures of this segment determined by the cryo-electron microscopy method micro-electron diffraction explain its dominant influence on tau aggregation. Of practical significance, the structures lead to the design of inhibitors that not only inhibit tau aggregation but also inhibit the ability of exogenous full-length tau fibrils to seed intracellular tau in HEK293 biosensor cells into amyloid. We also raise the possibility that the two VQIINK structures represent amyloid polymorphs of tau that may account for a subset of prion-like strains of tau.

    View Publication Page
    Gonen Lab
    09/07/17 | The role of disulfide bond replacements in analogues of the tarantula toxin ProTx-II and their effects on inhibition of the voltage-gated sodium ion channel Nav1.7.
    Wright ZV, McCarthy S, Dickman R, Reyes FE, Sanchez-Martinez S, Cryar A, Kilford I, Hall A, Takle AK, Topf M, Gonen T, Thalassinos K, Tabor AB
    Journal of the American Chemical Society. 2017 Sep 07;139(37):13063-75. doi: 10.1021/jacs.7b06506

    Spider venom toxins, such as Protoxin-II (ProTx-II), have recently received much attention as selective Nav1.7 channel blockers, with potential to be developed as leads for the treatment of chronic nocioceptive pain. ProTx-II is a 30-amino acid peptide with three disulfide bonds that has been reported to adopt a well-defined inhibitory cystine knot (ICK) scaffold structure. Potential drawbacks with such peptides include poor pharmacodynamics and potential scrambling of the disulfide bonds in vivo. In order to address these issues, in the present study we report the solid-phase synthesis of lanthionine-bridged analogues of ProTx-II, in which one of the three disulfide bridges is replaced with a thioether linkage, and evaluate the biological properties of these analogues. We have also investigated the folding and disulfide bridging patterns arising from different methods of oxidation of the linear peptide precursor. Finally, we report the X-ray crystal structure of ProTx-II to atomic resolution; to our knowledge this is the first crystal structure of an ICK spider venom peptide not bound to a substrate.

    View Publication Page
    Gonen Lab
    06/24/17 | MicroED structure of Au146(p-MBA)57 at subatomic resolution reveals a twinned FCC cluster.
    Vergara S, Lukes DA, Martynowycz MW, Santiago U, Plascencia-Villa G, Weiss SC, de la Cruz MJ, Black DM, Alvarez MM, Lopez-Lozano X, Barnes CO, Lin G, Weissker H, Whetten RL, Gonen T, Calero G
    Journal of Physical Chemistry Letters. 2017 Oct 31;8(5523-30):arXiv:1706.07902 [physics.atm-clus]. doi: 10.1021/acs.jpclett.7b02621

    Solving the atomic structure of metallic clusters is fundamental to understanding their optical, electronic, and chemical properties. We report the structure of Au146(p-MBA)57 at subatomic resolution (0.85 {\AA}) using electron diffraction (MicroED) and atomic resolution by X-ray diffraction. The 146 gold atoms may be decomposed into two constituent sets consisting of 119 core and 27 peripheral atoms. The core atoms are organized in a twinned FCC structure whereas the surface gold atoms follow a C2 rotational symmetry about an axis bisecting the twinning plane. The protective layer of 57 p-MBAs fully encloses the cluster and comprises bridging, monomeric, and dimeric staple motifs. Au146(p-MBA)57 is the largest cluster observed exhibiting a bulk-like FCC structure as well as the smallest gold particle exhibiting a stacking fault.

    View Publication Page
    Gonen Lab
    06/22/17 | Low-complexity domains adhere by reversible amyloid-like interactions between kinked β-sheets.
    Hughes MP, Sawaya MR, Goldschmidt L, Rodriguez JA, Cascio D, Gonen T, Eisenberg DS
    bioRxiv. 2017 Jun 22:. doi: 10.1101/153817

    Control of metabolism by compartmentation is a widespread feature of higher cells. Recent studies have focused on dynamic intracellular bodies such as stress granules, P-bodies, nucleoli, and metabolic puncta. These bodies appear as separate phases, some containing reversible, amyloid-like fibrils formed by interactions of low-complexity protein domains. Here we report five atomic structures of segments of low-complexity domains from granule-forming proteins, one determined to 1.1 Å resolution by micro-electron diffraction. Four of these interacting protein segments show common characteristics, all in contrast to pathogenic amyloid: kinked peptide backbones, small surface areas of interaction, and predominate attractions between aromatic side-chains. By computationally threading the human proteome on three of our kinked structures, we identified hundreds of low-complexity segments potentially capable of forming such reversible interactions. These segments are found in proteins as diverse as RNA binders, nuclear pore proteins, keratins, and cornified envelope proteins, consistent with the capacity of cells to form a wide variety of dynamic intracellular bodies.

    View Publication Page
    Gonen Lab
    06/22/17 | Taking the measure of MicroED.
    Rodriguez JA, Eisenberg DS, Gonen T
    Current Opinion in Structural Biology. 2017 Jun 22;46:79-86. doi: 10.1016/j.sbi.2017.06.004

    It is now possible to routinely determine atomic resolution structures by electron cryo-microscopy (cryoEM), facilitated in part by the method known as micro electron-diffraction (MicroED). Since its initial demonstration in 2013, MicroED has helped determine a variety of protein structures ranging in molecular weight from a few hundred Daltons to several hundred thousand Daltons. Some of these structures were novel while others were previously known. The resolutions of structures obtained thus far by MicroED range from 3.2Å to 1.0Å, with most better than 2.5Å. Crystals of various sizes and shapes, with different space group symmetries, and with a range of solvent content have all been studied by MicroED. The wide range of crystals explored to date presents the community with a landscape of opportunity for structure determination from nano crystals. Here we summarize the lessons we have learned during the first few years of MicroED, and from our attempts at the first ab initio structure determined by the method. We re-evaluate theoretical considerations in choosing the appropriate crystals for MicroED and for extracting the most meaning out of measured data. With more laboratories worldwide adopting the technique, we speculate what the first decade might hold for MicroED.

    View Publication Page
    Gonen Lab
    06/21/17 | A method to minimize condenser lens-induced hysteresis effects in a JEOL JEM-3200FSC microscope to enable stable cryoEM low-dose operations.
    de la Cruz MJ, Martynowycz M, Hattne J, Shi D, Gonen T
    bioRxiv. 2017 Jun 21:. doi: 10.1101/153395

    Low dose imaging procedures are key for a successful cryoEM experiment (whether by electron cryotomography, single particle analysis, electron crystallography, or MicroED). We present a method to minimize magnetic hysteresis of the condenser lens system in the JEOL JEM-3200FSC transmission electron microscope (TEM) in order to maintain a stable optical axis for the beam path of low-dose imaging. The simple procedure involves independent voltage ramping of the CL1 and CL2 lenses immediately before switching to the focusing and exposure beam settings for data collection.

    View Publication Page
    Gonen Lab
    06/20/17 | MicroED structures from micrometer thick protein crystals.
    Martynowycz M, Glynn C, Miao J, de la Cruz MJ, Hattne J, Shi D, Cascio D, Rodriguez J, Gonen T
    bioRxiv. 2017 Jun 20:. doi: 10.1101/152504

    Theoretical calculations suggest that crystals exceeding 100 nm thickness are excluded by dynamical scattering from successful structure determination using microcrystal electron diffraction (MicroED). These calculations are at odds with experimental results where MicroED structures have been determined from significantly thicker crystals. Here we systematically evaluate the influence of thickness on the accuracy of MicroED intensities and the ability to determine structures from protein crystals one micrometer thick. To do so, we compare ab initio structures of a human prion protein segment determined from thin crystals to those determined from crystals up to one micrometer thick. We also compare molecular replacement solutions from crystals of varying thickness for a larger globular protein, proteinase K. Our results indicate that structures can be reliably determined from crystals at least an order of magnitude thicker than previously suggested by simulation, opening the possibility for an even broader range of MicroED experiments.

    View Publication Page
    Gonen Lab
    04/25/17 | An Amidase_3 domain-containing N-acetylmuramyl-L-alanine amidase is required for mycobacterial cell division.
    Senzani S, Li D, Bhaskar A, Ealand C, Chang J, Rimal B, Liu C, Joon Kim S, Dhar N, Kana B
    Scientific Reports. 2017 Apr 25;7(1):1140. doi: 10.1038/s41598-017-01184-7

    Mycobacteria possess a multi-layered cell wall that requires extensive remodelling during cell division. We investigated the role of an amidase_3 domain-containing N-acetylmuramyl-L-alanine amidase, a peptidoglycan remodelling enzyme implicated in cell division. We demonstrated that deletion of MSMEG_6281 (Ami1) in Mycobacterium smegmatis resulted in the formation of cellular chains, illustrative of cells that were unable to complete division. Suprisingly, viability in the Δami1 mutant was maintained through atypical lateral branching, the products of which proceeded to form viable daughter cells. We showed that these lateral buds resulted from mislocalization of DivIVA, a major determinant in facilitating polar elongation in mycobacterial cells. Failure of Δami1 mutant cells to separate also led to dysregulation of FtsZ ring bundling. Loss of Ami1 resulted in defects in septal peptidoglycan turnover with release of excess cell wall material from the septum or newly born cell poles. We noted signficant accumulation of 3-3 crosslinked muropeptides in the Δami1 mutant. We further demonstrated that deletion of ami1 leads to increased cell wall permeability and enhanced susceptiblity to cell wall targeting antibiotics. Collectively, these data provide novel insight on cell division in actinobacteria and highlights a new class of potential drug targets for mycobacterial diseases.

    View Publication Page
    Gonen Lab
    02/13/17 | Atomic-resolution structures from fragmented protein crystals with the cryoEM method MicroED.
    de la Cruz MJ, Hattne J, Shi D, Seidler P, Rodriguez J, Reyes FE, Sawaya MR, Cascio D, Weiss SC, Kim SK, Hinck CS, Hinck AP, Calero G, Eisenberg D, Gonen T
    Nature Methods. 2017 Feb 13;14(4):399-402. doi: 10.1038/nmeth.4178

    Traditionally, crystallographic analysis of macromolecules has depended on large, well-ordered crystals, which often require significant effort to obtain. Even sizable crystals sometimes suffer from pathologies that render them inappropriate for high-resolution structure determination. Here we show that fragmentation of large, imperfect crystals into microcrystals or nanocrystals can provide a simple path for high-resolution structure determination by the cryoEM method MicroED and potentially by serial femtosecond crystallography.

    View Publication Page