Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Gonen Lab / Publications
general_search_page-panel_pane_1 | views_panes

91 Publications

Showing 71-80 of 91 results
Gonen Lab
10/18/10 | An engineered DNA-binding protein self-assembles metallic nanostructures.
Hall Sedlak R, Hnilova M, Gachelet E, Przybyla L, Dranow D, Gonen T, Sarikaya M, Tamerler C, Traxler B
Chembiochem: A European Journal of Chemical Biology. 2010 Oct 18;11(15):2108-12. doi: 10.1002/cbic.201000407

The golden age of DNA: We describe a strategy for engineering bifunctional proteins that simultaneously associate with metals and DNA to create self-assembled nanostructures. A DNA binding protein engineered with a gold binding peptide arranges colloidal gold particles along a DNA guide by virtue of its introduced peptide motif. These self-assembled complexes represent a step toward constructing nanoarchitectures with potential in nanoelectronic and photonic devices.

View Publication Page
Gonen Lab
10/01/10 | Structure of the cholera toxin secretion channel in its closed state.
Reichow SL, Korotkov KV, Hol WG, Gonen T
Nature Structural & Molecular Biology. 2010 Oct;17(10):1226-32. doi: 10.1038/nsmb.1910

The type II secretion system (T2SS) is a macromolecular complex spanning the inner and outer membranes of Gram-negative bacteria. Remarkably, the T2SS secretes folded proteins, including multimeric assemblies such as cholera toxin and heat-labile enterotoxin from Vibrio cholerae and enterotoxigenic Escherichia coli, respectively. The major outer membrane T2SS protein is the ’secretin’ GspD. Cryo-EM reconstruction of the V. cholerae secretin at 19-Å resolution reveals a dodecameric structure reminiscent of a barrel, with a large channel at its center that contains a closed periplasmic gate. The GspD periplasmic domain forms a vestibule with a conserved constriction, and it binds to a pentameric exoprotein and to the trimeric tip of the T2SS pseudopilus. By combining our results with structures of the cholera toxin and T2SS pseudopilus tip, we provide a structural basis for a possible secretion mechanism of the T2SS.

View Publication Page
Gonen Lab
05/17/10 | Cooperation of the Dam1 and Ndc80 kinetochore complexes enhances microtubule coupling and is regulated by aurora B.
Tien JF, Umbreit NT, Gestaut DR, Franck AD, Cooper J, Wordeman L, Gonen T, Asbury CL, Davis TN
The Journal of Cell Biology. 2010 May 17;189(4):713-23. doi: 10.1083/jcb.200910142

The coupling of kinetochores to dynamic spindle microtubules is crucial for chromosome positioning and segregation, error correction, and cell cycle progression. How these fundamental attachments are made and persist under tensile forces from the spindle remain important questions. As microtubule-binding elements, the budding yeast Ndc80 and Dam1 kinetochore complexes are essential and not redundant, but their distinct contributions are unknown. In this study, we show that the Dam1 complex is a processivity factor for the Ndc80 complex, enhancing the ability of the Ndc80 complex to form load-bearing attachments to and track with dynamic microtubule tips in vitro. Moreover, the interaction between the Ndc80 and Dam1 complexes is abolished when the Dam1 complex is phosphorylated by the yeast aurora B kinase Ipl1. This provides evidence for a mechanism by which aurora B resets aberrant kinetochore-microtubule attachments. We propose that the action of the Dam1 complex as a processivity factor in kinetochore-microtubule attachment is regulated by conserved signals for error correction.

View Publication Page
Gonen Lab
02/26/10 | The prototypical H+/galactose symporter GalP assembles into functional trimers.
Zheng H, Taraska J, Merz AJ, Gonen T
Journal of Molecular Biology. 2010 Feb 26;396(3):593-601. doi: 10.1016/j.jmb.2009.12.010

Glucose is a primary source of energy for human cells. Glucose transporters form specialized membrane channels for the transport of sugars into and out of cells. Galactose permease (GalP) is the closest bacterial homolog of human facilitated glucose transporters. Here, we report the functional reconstitution and 2D crystallization of GalP. Single particle electron microscopy analysis of purified GalP shows that the protein assembles as an oligomer with three distinct densities. Reconstitution assays yield 2D GalP crystals that exhibit a hexagonal array having p3 symmetry. The projection structure of GalP at 18 A resolution shows that the protein is trimeric. Each monomer in the trimer forms its own channel, but an additional cavity (10 approximately 15 A in diameter) is apparent at the 3-fold axis of the oligomer. We show that the crystalline GalP is able to selectively bind substrate, suggesting that the trimeric form is biologically active.

View Publication Page
Gonen Lab
01/01/10 | Interactions of the transmembrane polymeric rings of the Salmonella enterica serovar Typhimurium type III secretion system.
Sanowar S, Singh P, Pfuetzner RA, André I, Zheng H, Spreter T, Strynadka NC, Gonen T, Baker D, Goodlett DR, Miller SI
mBio. 2010;1:. doi: 10.1128/mBio.00158-10

The type III secretion system (T3SS) is an interspecies protein transport machine that plays a major role in interactions of Gram-negative bacteria with animals and plants by delivering bacterial effector proteins into host cells. T3SSs span both membranes of Gram-negative bacteria by forming a structure of connected oligomeric rings termed the needle complex (NC). Here, the localization of subunits in the Salmonella enterica serovar Typhimurium T3SS NC were probed via mass spectrometry-assisted identification of chemical cross-links in intact NC preparations. Cross-links between amino acids near the amino terminus of the outer membrane ring component InvG and the carboxyl terminus of the inner membrane ring component PrgH and between the two inner membrane components PrgH and PrgK allowed for spatial localization of the three ring components within the electron density map structures of NCs. Mutational and biochemical analysis demonstrated that the amino terminus of InvG and the carboxyl terminus of PrgH play a critical role in the assembly and function of the T3SS apparatus. Analysis of an InvG mutant indicates that the structure of the InvG oligomer can affect the switching of the T3SS substrate to translocon and effector components. This study provides insights into how structural organization of needle complex base components promotes T3SS assembly and function.

View Publication Page
Gonen Lab
10/01/09 | Lipid-protein interactions probed by electron crystallography.
Reichow SL, Gonen T
Current Opinion in Structural Biology. 2009 Oct;19(5):560-5. doi: 10.1016/j.sbi.2009.07.012

Electron crystallography is arguably the only electron cryomicroscopy (cryoEM) technique able to deliver an atomic-resolution structure of membrane proteins embedded in the lipid bilayer. In the electron crystallographic structures of the light driven ion pump, bacteriorhodopsin, and the water channel, aquaporin-0, sufficiently high resolution was obtained and both lipid and protein were visualized, modeled, and described in detail. An extensive network of lipid-protein interactions mimicking native membranes is established and maintained in two-dimensional (2D) crystalline vesicles used for structural analysis by electron crystallography. Lipids are tightly integrated into the protein’s architecture where they can affect the function, structure, quaternary assembly, and the stability of the membrane protein.

View Publication Page
Gonen Lab
09/10/08 | Noncanonical binding of calmodulin to aquaporin-0: implications for channel regulation.
Reichow SL, Gonen T
Structure. 2008 Sep 10;16(9):1389-98. doi: 10.1016/j.str.2008.06.011

Aquaporins (AQPs) are a family of ubiquitous membrane channels that conduct water across cell membranes. AQPs form homotetramers containing four functional and independent water pores. Aquaporin-0 (AQP0) is expressed in the eye lens, where its water permeability is regulated by calmodulin (CaM). Here we use a combination of biochemical methods and NMR spectroscopy to probe the interaction between AQP0 and CaM. We show that CaM binds the AQP0 C-terminal domain in a calcium-dependent manner. We demonstrate that only two CaM molecules bind a single AQP0 tetramer in a noncanonical fashion, suggesting a form of cooperativity between AQP0 monomers. Based on these results, we derive a structural model of the AQP0/CaM complex, which suggests CaM may be inhibitory to channel permeability by capping the vestibules of two monomers within the AQP0 tetramer. Finally, phosphorylation within AQP0's CaM binding domain inhibits the AQP0/CaM interaction, suggesting a temporal regulatory mechanism for complex formation.

View Publication Page
Gonen Lab
07/01/08 | Electron crystallography of aquaporins.
Andrews S, Reichow SL, Gonen T
IUBMB Life. 2008 Jul;60(7):430-6. doi: 10.1002/iub.53

Aquaporins are a family of ubiquitous membrane proteins that form a pore for the permeation of water. Both electron and X-ray crystallography played major roles in determining the atomic structures of a number of aquaporins. This review focuses on electron crystallography, and its contribution to the field of aquaporin biology. We briefly discuss electron crystallography and the two-dimensional crystallization process. We describe features of aquaporins common to both electron and X-ray crystallographic structures; as well as some structural insights unique to electron crystallography, including aquaporin junction formation and lipid-protein interactions.

View Publication Page
Gonen Lab
07/01/08 | Interactions of lipids with aquaporin-0 and other membrane proteins.
Hite RK, Gonen T, Harrison SC, Walz T
Pflügers Archiv - European Journal of Physiology. 2008 Jul;456(4):651-61. doi: 10.1007/s00424-007-0353-9

The structure of aquaporin-0 (AQP0) has recently been determined by electron crystallography of two-dimensional (2D) crystals and by X-ray crystallography of three-dimensional (3D) crystals. The electron crystallographic structure revealed nine lipids per AQP0 monomer, which form an almost complete bilayer. The lipids adopt a wide variety of conformations and tightly fill the space between adjacent AQP0 tetramers. The conformations of the lipid acyl chains appear to be determined not only by the protein surface but also by the acyl chains of adjacent lipid molecules. In the X-ray structure, the hydrophobic region of the protein is surrounded by a detergent micelle, with two ordered detergent molecules per AQP0 monomer. Despite the different environments, the electron crystallographic and X-ray structures of AQP0 are virtually identical, but they differ in the temperature factors of the atoms that either contact the lipids in the 2D crystals or are exposed to detergents in the 3D crystals. The temperature factors are higher in the X-ray structure, suggesting that the detergent-exposed AQP0 residues are less ordered than the corresponding ones contacting lipids in the 2D crystals. An examination of ordered detergent molecules in crystal structures of other aquaporins and of lipid molecules in 2D and 3D crystals of bacteriorhodopsin suggests that the increased conformational variability of detergent-exposed residues compared to lipid-contacting residues is a general feature.

View Publication Page
Gonen Lab
04/01/08 | Junction-forming aquaporins.
Engel A, Fujiyoshi Y, Gonen T, Walz T
Current Opinion in Structural Biology. 2008 Apr;18(2):229-35. doi: 10.1016/j.sbi.2007.11.003

Aquaporins (AQPs) are a family of ubiquitous membrane channels that conduct water and solutes across membranes. This review focuses on AQP0 and AQP4, which in addition to forming water channels also appear to play a role in cell adhesion. We discuss the recently determined structures of the membrane junctions mediated by these two AQPs, the mechanisms that regulate junction formation, and evidence that supports a role for AQP0 and AQP4 in cell adhesion.

View Publication Page