Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Harris Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block

Type of Publication

general_search_page-panel_pane_1 | views_panes

47 Publications

Showing 21-30 of 47 results
Your Criteria:
    02/19/18 | Single excitatory axons form clustered synapses onto CA1 pyramidal cell dendrites.
    Bloss EB, Cembrowski MS, Karsh B, Colonell J, Fetter RD, Spruston N
    Nature Neuroscience. 2018 Mar;21(3):353-63. doi: 10.1038/s41593-018-0084-6

    CA1 pyramidal neurons are a major output of the hippocampus and encode features of experience that constitute episodic memories. Feature-selective firing of these neurons results from the dendritic integration of inputs from multiple brain regions. While it is known that synchronous activation of spatially clustered inputs can contribute to firing through the generation of dendritic spikes, there is no established mechanism for spatiotemporal synaptic clustering. Here we show that single presynaptic axons form multiple, spatially clustered inputs onto the distal, but not proximal, dendrites of CA1 pyramidal neurons. These compound connections exhibit ultrastructural features indicative of strong synapses and occur much more commonly in entorhinal than in thalamic afferents. Computational simulations revealed that compound connections depolarize dendrites in a biophysically efficient manner, owing to their inherent spatiotemporal clustering. Our results suggest that distinct afferent projections use different connectivity motifs that differentially contribute to dendritic integration.

    View Publication Page
    11/08/17 | Fully integrated silicon probes for high-density recording of neural activity.
    Jun JJ, Steinmetz NA, Siegle JH, Denman DJ, Bauza M, Barbarits B, Lee AK, Anastassiou CA, Andrei A, Aydın Ç, Barbic M, Blanche TJ, Bonin V, Couto J, Dutta B, Gratiy SL, Gutnisky DA, Häusser M, Karsh B, Ledochowitsch P, Lopez CM, Mitelut C, Musa S, Okun M, Pachitariu M, Putzeys J, Rich PD, Rossant C, Sun W, Svoboda K, Carandini M, Harris KD, Koch C, O'Keefe J, Harris TD
    Nature. 2017 Nov 08;551(7679):232-236. doi: 10.1038/nature24636

    Sensory, motor and cognitive operations involve the coordinated action of large neuronal populations across multiple brain regions in both superficial and deep structures. Existing extracellular probes record neural activity with excellent spatial and temporal (sub-millisecond) resolution, but from only a few dozen neurons per shank. Optical Ca(2+) imaging offers more coverage but lacks the temporal resolution needed to distinguish individual spikes reliably and does not measure local field potentials. Until now, no technology compatible with use in unrestrained animals has combined high spatiotemporal resolution with large volume coverage. Here we design, fabricate and test a new silicon probe known as Neuropixels to meet this need. Each probe has 384 recording channels that can programmably address 960 complementary metal-oxide-semiconductor (CMOS) processing-compatible low-impedance TiN sites that tile a single 10-mm long, 70 × 20-μm cross-section shank. The 6 × 9-mm probe base is fabricated with the shank on a single chip. Voltage signals are filtered, amplified, multiplexed and digitized on the base, allowing the direct transmission of noise-free digital data from the probe. The combination of dense recording sites and high channel count yielded well-isolated spiking activity from hundreds of neurons per probe implanted in mice and rats. Using two probes, more than 700 well-isolated single neurons were recorded simultaneously from five brain structures in an awake mouse. The fully integrated functionality and small size of Neuropixels probes allowed large populations of neurons from several brain structures to be recorded in freely moving animals. This combination of high-performance electrode technology and scalable chip fabrication methods opens a path towards recording of brain-wide neural activity during behaviour.

    View Publication Page
    09/05/17 | A general method to fine-tune fluorophores for live-cell and in vivo imaging.
    Grimm JB, Muthusamy AK, Liang Y, Brown TA, Lemon WC, Patel R, Lu R, Macklin JJ, Keller PJ, Ji N, Lavis LD
    Nature Methods. 2017 Oct;14(10):987-994. doi: 10.1038/nmeth.4403

    Pushing the frontier of fluorescence microscopy requires the design of enhanced fluorophores with finely tuned properties. We recently discovered that incorporation of four-membered azetidine rings into classic fluorophore structures elicits substantial increases in brightness and photostability, resulting in the Janelia Fluor (JF) series of dyes. We refined and extended this strategy, finding that incorporation of 3-substituted azetidine groups allows rational tuning of the spectral and chemical properties of rhodamine dyes with unprecedented precision. This strategy allowed us to establish principles for fine-tuning the properties of fluorophores and to develop a palette of new fluorescent and fluorogenic labels with excitation ranging from blue to the far-red. Our results demonstrate the versatility of these new dyes in cells, tissues and animals.

    View Publication Page
    Harris LabSinger LabTranscription ImagingFly Functional Connectome
    06/05/17 | Quantitative mRNA imaging throughout the entire Drosophila brain.
    Long X, Colonell J, Wong AM, Singer RH, Lionnet T
    Nature Methods. 2017 Jun 05;14(7):703-6. doi: 10.1038/nmeth.4309

    We describe a fluorescence in situ hybridization method that permits detection of the localization and abundance of single mRNAs (smFISH) in cleared whole-mount adult Drosophila brains. The approach is rapid and multiplexable and does not require molecular amplification; it allows facile quantification of mRNA expression with subcellular resolution on a standard confocal microscope. We further demonstrate single-mRNA detection across the entire brain using a custom Bessel beam structured illumination microscope (BB-SIM).

    View Publication Page
    05/05/17 | Detachable glass microelectrodes for recording action potentials in active moving organs.
    Barbic M, Moreno A, Harris TD, Kay MW
    American Journal of Physiology. Heart and Circulatory Physiology. 2017 May 05;312(6):H1248-59. doi: 10.1152/ajpheart.00741.2016

    We describe new detachable floating glass micropipette electrode devices that provide targeted action potential recordings in active moving organs without requiring constant mechanical constraint or pharmacological inhibition of tissue motion. The technology is based on the concept of a glass micropipette electrode that is held firmly during cell targeting and intracellular insertion, after which a 100µg glass microelectrode, a "microdevice", is gently released to remain within the moving organ. The microdevices provide long-term recordings of action potentials, even during millimeter-scale movement of tissue in which the device is embedded. We demonstrate two different glass micropipette electrode holding and detachment designs appropriate for the heart (sharp glass microdevices for cardiac myocytes in rats, guinea pigs and humans) and the brain (patch glass microdevices for neurons in rats). We explain how microdevices enable measurements of multiple cells within a moving organ that are typically difficult with other technologies. Using sharp microdevices, action potential duration (APD) was monitored continuously for 15 minutes in unconstrained perfused hearts during global ischemia-reperfusion, providing beat-to-beat measurements of changes in APD. Action potentials from neurons in the hippocampus of anaesthetized rats were measured with patch microdevices, which provided stable base potentials during long-term recordings. Our results demonstrate that detachable microdevices are an elegant and robust tool to record electrical activity with high temporal resolution and cellular level localization without disturbing the physiological working conditions of the organ.

    View Publication Page
    01/19/17 | Real-time spike sorting platform for high-density extracellular probes with ground-truth validation and drift correction.
    Jun JJ, Mitelut C, Lai C, Gratiy S, Anastassiou C, Harris TD
    bioRxiv. 2017 Jan 19:. doi: 10.1101/101030

    Electrical recordings from a large array of electrodes give us access to neural population activity with single-cell, single-spike resolution. These recordings contain extracellular spikes which must be correctly detected and assigned to individual neurons. Despite numerous spike-sorting techniques developed in the past, a lack of high-quality ground-truth datasets hinders the validation of spike-sorting approaches. Furthermore, existing approaches requiring manual corrections are not scalable for hours of recordings exceeding 100 channels. To address these issues, we built a comprehensive spike-sorting pipeline that performs reliably under noise and probe drift by incorporating a channel-covariance feature and a clustering based on fast density-peak finding. We validated performance of our workflow using multiple ground-truth datasets that recently became available. Our software scales linearly and processes a 1000-channel recording in real-time using a single workstation. Accurate, real-time spike sorting from large recording arrays will enable more precise control of closed-loop feedback experiments and brain-computer interfaces.

    View Publication Page
    12/04/16 | Sensitive enhancement of vessel wall imaging with an endoesophageal Wireless Amplified NMR Detector (WAND).
    Zeng X, Barbic M, Chen L, Qian C
    Magnetic Resonance in Medicine. 2016 Dec 04;78(5):2048-54. doi: 10.1002/mrm.26562

    PURPOSE: To improve the imaging quality of vessel walls with an endoesophageal Wireless Amplified NMR Detector (WAND).

    METHODS: A cylindrically shaped double-frequency resonator has been constructed with a single metal wire that is self-connected by a pair of nonlinear capacitors. The double-frequency resonator can convert wirelessly provided pumping power into amplified MR signals. This compact design makes the detector easily insertable into a rodent esophagus.

    RESULTS: The detector has good longitudinal and axial symmetry. Compared to an external surface coil, the WAND can enhance detection sensitivity by at least 5 times, even when the distance separation between the region of interest and the detector's cylindrical surface is twice the detector's own radius. Such detection capability enables us to observe vessel walls near the aortic arch and carotid bifurcation with elevated sensitivity.

    CONCLUSION: A cylindrical MRI detector integrated with a wireless-powered amplifier has been developed as an endoesophageal detector to enhance detection sensitivity of vessel walls. This detector can greatly improve the imaging quality for vessel regions that are susceptible to atherosclerotic lesions. Magn Reson Med, 2016. © 2016 International Society for Magnetic Resonance in Medicine.

    View Publication Page
    09/14/16 | Effect of magnetic nanoparticle shape on flux amplification in inductive coil magnetic resonance detection.
    Barbic M, El Bidweihy H
    Journal of Applied Physics. 2016 Sep 14:104506-1-7. doi: 10.1063/1.4962451

    We model and analyze the effect of particle shape on the signal amplification in inductive coil magnetic resonance detection using the reversible transverse magnetic susceptibility of oriented magnetic nanostructures. Utilizing the single magnetic domain Stoner-Wohlfarth model of uniform magnetization rotation, we reveal that different ellipsoidal particle shapes can have a pronounced effect on the magnetic flux enhancement in detection configurations typical of magnetic resonance settings. We compare and contrast the prolate ellipsoids, oblate ellipsoids, and exchange-biased spheres and show that the oblate ellipsoids and exchange-biased spheres have a significantly higher flux amplification effect than the prolate ellipsoids considered previously. In addition, oblate ellipsoids have a much broader polarizing magnetic fieldrange over which their transverse flux amplification is significant. We show the dependence of transverse flux amplification on magnetic resonance bias field and discuss the resulting signal-to-noise ratio of inductive magnetic resonance detection due to the magnetic nanoparticle-filled core of the magnetic resonance detection coil.

    View Publication Page
    05/30/16 | A bright cyan-excitable orange fluorescent protein facilitates dual-emission microscopy and enhances bioluminescence imaging in vivo.
    Chu J, Oh Y, Sens A, Ataie N, Dana H, Macklin JJ, Laviv T, Welf ES, Dean KM, Zhang F, Kim BB, Tang CT, Hu M, Baird MA, Davidson MW, Kay MA, Fiolka R, Yasuda R, Kim DS, Ng H, Lin MZ
    Nature Biotechnology. 2016 May 30;34(7):760-7. doi: 10.1038/nbt.3550

    Orange-red fluorescent proteins (FPs) are widely used in biomedical research for multiplexed epifluorescence microscopy with GFP-based probes, but their different excitation requirements make multiplexing with new advanced microscopy methods difficult. Separately, orange-red FPs are useful for deep-tissue imaging in mammals owing to the relative tissue transmissibility of orange-red light, but their dependence on illumination limits their sensitivity as reporters in deep tissues. Here we describe CyOFP1, a bright, engineered, orange-red FP that is excitable by cyan light. We show that CyOFP1 enables single-excitation multiplexed imaging with GFP-based probes in single-photon and two-photon microscopy, including time-lapse imaging in light-sheet systems. CyOFP1 also serves as an efficient acceptor for resonance energy transfer from the highly catalytic blue-emitting luciferase NanoLuc. An optimized fusion of CyOFP1 and NanoLuc, called Antares, functions as a highly sensitive bioluminescent reporter in vivo, producing substantially brighter signals from deep tissues than firefly luciferase and other bioluminescent proteins.

    View Publication Page
    03/24/16 | Sensitive red protein calcium indicators for imaging neural activity.
    Dana H, Mohar B, Sun Y, Narayan S, Gordus A, Hasseman JP, Tsegaye G, Holt GT, Hu A, Walpita D, Patel R, Macklin JJ, Bargmann CI, Ahrens MB, Schreiter ER, Jayaraman V, Looger LL, Svoboda K, Kim DS
    eLife. 2016 Mar 24;5:. doi: 10.7554/eLife.12727

    Genetically encoded calcium indicators (GECIs) allow measurement of activity in large populations of neurons and in small neuronal compartments, over times of milliseconds to months. Although GFP-based GECIs are widely used for in vivo neurophysiology, GECIs with red-shifted excitation and emission spectra have advantages for in vivo imaging because of reduced scattering and absorption in tissue, and a consequent reduction in phototoxicity. However, current red GECIs are inferior to the state-of-the-art GFP-based GCaMP6 indicators for detecting and quantifying neural activity. Here we present improved red GECIs based on mRuby (jRCaMP1a, b) and mApple (jRGECO1a), with sensitivity comparable to GCaMP6. We characterized the performance of the new red GECIs in cultured neurons and in mouse, Drosophila, zebrafish and C. elegans in vivo. Red GECIs facilitate deep-tissue imaging, dual-color imaging together with GFP-based reporters, and the use of optogenetics in combination with calcium imaging.

    View Publication Page