Main Menu (Mobile)- Block

Main Menu - Block

Huston Lab

janelia7_blocks-janelia7_secondary_menu | block
More in this Lab Landing Page
custom_misc-custom_misc_lab_updates | block
node:field_content_header | entity_field
Current Research
node:field_content_summary | entity_field

How do sensory and motor systems interact? Answering this question is key to understanding how neural circuits generate behavior.

node:body | entity_field

Sensory systems encode information about the external world, and motor systems generate movements, but how do the two systems communicate to generate sensory-guided behavior?  I record the electrical activity from fly motor neurons during visual stimulation to determine how the motor neurons decode their visual system inputs and generate appropriate behavior.  By working in the fly I can draw on the strong Drosophila genetic toolkit that allows me to also manipulate the activity of specific neurons during my experiments.

Considerable scientific effort has gone into understanding how fly visual neurons respond to and encode sensory inputs.  Less is known about how the responses of these neurons are used to guide movements of the fly.  In the specific case of fly gaze-stabilization behavior, the relevant motor neurons drive muscles that move the head to keep the eyes level.  These motor neurons receive direct synaptic inputs from visual neurons.  The comparative simplicity of the circuit provides an exciting opportunity to study how motor neurons process their visual system inputs.  I perform patch clamp and extracellular recordings from these motor neurons while presenting visual stimuli to determine the algorithms that the motor neurons use to extract appropriate information from the visual system.  Studying these questions in Drosophila gives me access to the ever-improving repertoire of genetic tools that allow genetic manipulations to be targeted to specific single neuron types.  I use such techniques to manipulate upstream sensory neurons during my motor neuron recordings and behavioral experiments to determine the biological mechanisms that underlie the responses I see.

By studying this system I hope to not only understand how this part of the fly nervous system works, but also to uncover general principles applicable to understanding how the motor and sensory systems of all animals interact at the neural level to generate behavior.