Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Huston Lab / Publications
custom | custom


facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3644 Publications

Showing 1-10 of 3644 results
12/16/22 | En bloc preparation of Drosophila brains enables high-throughput FIB-SEM connectomics.
Lu Z, Xu CS, Hayworth KJ, Pang S, Shinomiya K, Plaza SM, Scheffer LK, Rubin GM, Hess HF, Rivlin PK, Meinertzhagen IA
Frontiers in Neural Circuits. 2022 Dec 16;16:917251. doi: 10.3389/fncir.2022.917251

Deriving the detailed synaptic connections of an entire nervous system is the unrealized goal of the nascent field of connectomics. For the fruit fly , in particular, we need to dissect the brain, connectives, and ventral nerve cord as a single continuous unit, fix and stain it, and undertake automated segmentation of neuron membranes. To achieve this, we designed a protocol using progressive lowering of temperature dehydration (PLT), a technique routinely used to preserve cellular structure and antigenicity. We combined PLT with low temperature staining (LTS) and recover fixed neurons as round profiles with darkly stained synapses, suitable for machine segmentation and automatic synapse detection. Here we report three different PLT-LTS methods designed to meet the requirements for FIB-SEM imaging of the brain. These requirements include: good preservation of ultrastructural detail, high level of staining, artifact-free microdissection, and smooth hot-knife cutting to reduce the brain to dimensions suited to FIB-SEM. In addition to PLT-LTS, we designed a jig to microdissect and pre-fix the fly's delicate brain and central nervous system. Collectively these methods optimize morphological preservation, allow us to image the brain usually at 8 nm per voxel, and simultaneously speed the formerly slow rate of FIB-SEM imaging.

View Publication Page
05/08/23 | Lipid flipping in the omega-3 fatty-acid transporter.
Nguyen C, Lei H, Lai LT, Gallenito MJ, Mu X, Matthies D, Gonen T
Nature Communications. 2023 May 08;14(1):2571. doi: 10.1038/s41467-023-37702-7

Mfsd2a is the transporter for docosahexaenoic acid (DHA), an omega-3 fatty acid, across the blood brain barrier (BBB). Defects in Mfsd2a are linked to ailments from behavioral and motor dysfunctions to microcephaly. Mfsd2a transports long-chain unsaturated fatty-acids, including DHA and α-linolenic acid (ALA), that are attached to the zwitterionic lysophosphatidylcholine (LPC) headgroup. Even with the recently determined structures of Mfsd2a, the molecular details of how this transporter performs the energetically unfavorable task of translocating and flipping lysolipids across the lipid bilayer remains unclear. Here, we report five single-particle cryo-EM structures of Danio rerio Mfsd2a (drMfsd2a): in the inward-open conformation in the ligand-free state and displaying lipid-like densities modeled as ALA-LPC at four distinct positions. These Mfsd2a snapshots detail the flipping mechanism for lipid-LPC from outer to inner membrane leaflet and release for membrane integration on the cytoplasmic side. These results also map Mfsd2a mutants that disrupt lipid-LPC transport and are associated with disease.

View Publication Page
05/04/23 | Glutamate indicators with improved activation kinetics and localization for imaging synaptic transmission.
Aggarwal A, Liu R, Chen Y, Ralowicz AJ, Bergerson SJ, Tomaska F, Mohar B, Hanson TL, Hasseman JP, Reep D, Tsegaye G, Yao P, Ji X, Kloos M, Walpita D, Patel R, Mohr MA, Tillberg PW, GENIE Project Team , Looger LL, Marvin JS, Hoppa MB, Konnerth A, Kleinfeld D, Schreiter ER, Podgorski K
Nature Methods. 2023 May 04:. doi: 10.1038/s41592-023-01863-6

The fluorescent glutamate indicator iGluSnFR enables imaging of neurotransmission with genetic and molecular specificity. However, existing iGluSnFR variants exhibit low in vivo signal-to-noise ratios, saturating activation kinetics and exclusion from postsynaptic densities. Using a multiassay screen in bacteria, soluble protein and cultured neurons, we generated variants with improved signal-to-noise ratios and kinetics. We developed surface display constructs that improve iGluSnFR's nanoscopic localization to postsynapses. The resulting indicator iGluSnFR3 exhibits rapid nonsaturating activation kinetics and reports synaptic glutamate release with decreased saturation and increased specificity versus extrasynaptic signals in cultured neurons. Simultaneous imaging and electrophysiology at individual boutons in mouse visual cortex showed that iGluSnFR3 transients report single action potentials with high specificity. In vibrissal sensory cortex layer 4, we used iGluSnFR3 to characterize distinct patterns of touch-evoked feedforward input from thalamocortical boutons and both feedforward and recurrent input onto L4 cortical neuron dendritic spines.

View Publication Page
05/02/23 | A leaky integrate-and-fire computational model based on the connectome of the entire adult Drosophila brain reveals insights into sensorimotor processing
Philip K. Shiu , Gabriella R. Sterne , Nico Spiller , Romain Franconville , Andrea Sandoval , Joie Zhou , Neha Simha , Chan Hyuk Kang , Seongbong Yu , Jinseop S. Kim , Sven Dorkenwald , Arie Matsliah , Philipp Schlegel , Szi-chieh Yu , Claire E. McKellar , Amy Sterling , Marta Costa , Katharina Eichler , Gregory S.X.E. Jefferis , Mala Murthy , Alexander Shakeel Bates , Nils Eckstein , Jan Funke , Salil S. Bidaye , Stefanie Hampel , Andrew M. Seeds , Kristin Scott
bioRxiv. 2023 May 02:. doi: 10.1101/2023.05.02.539144

The forthcoming assembly of the adult Drosophila melanogaster central brain connectome, containing over 125,000 neurons and 50 million synaptic connections, provides a template for examining sensory processing throughout the brain. Here, we create a leaky integrate-and-fire computational model of the entire Drosophila brain, based on neural connectivity and neurotransmitter identity, to study circuit properties of feeding and grooming behaviors. We show that activation of sugar-sensing or water-sensing gustatory neurons in the computational model accurately predicts neurons that respond to tastes and are required for feeding initiation. Computational activation of neurons in the feeding region of the Drosophila brain predicts those that elicit motor neuron firing, a testable hypothesis that we validate by optogenetic activation and behavioral studies. Moreover, computational activation of different classes of gustatory neurons makes accurate predictions of how multiple taste modalities interact, providing circuit-level insight into aversive and appetitive taste processing. Our computational model predicts that the sugar and water pathways form a partially shared appetitive feeding initiation pathway, which our calcium imaging and behavioral experiments confirm. Additionally, we applied this model to mechanosensory circuits and found that computational activation of mechanosensory neurons predicts activation of a small set of neurons comprising the antennal grooming circuit that do not overlap with gustatory circuits, and accurately describes the circuit response upon activation of different mechanosensory subtypes. Our results demonstrate that modeling brain circuits purely from connectivity and predicted neurotransmitter identity generates experimentally testable hypotheses and can accurately describe complete sensorimotor transformations.

View Publication Page
05/02/23 | Meta-learning in head fixed mice navigating in virtual reality: A Behavioral Analysis
Xinyu Zhao , Rachel Gattoni , Andrea Kozlosky , Angela Jacobs , Colin Morrow , Sarah Lindo , Nelson Spruston
bioRxiv. 2023 May 02:. doi: 10.1101/2023.05.01.538936

Animals can learn general task structures and use them to solve new problems with novel sensory specifics. This capacity of ‘learning to learn’, or meta-learning, is difficult to achieve in artificial systems, and the mechanisms by which it is achieved in animals are unknown. As a step toward enabling mechanistic studies, we developed a behavioral paradigm that demonstrates meta-learning in head-fixed mice. We trained mice to perform a two-alternative forced-choice task in virtual reality (VR), and successively changed the visual cues that signaled reward location. Mice showed increased learning speed in both cue generalization and serial reversal tasks. During reversal learning, behavior exhibited sharp transitions, with the transition occurring earlier in each successive reversal. Analysis of motor patterns revealed that animals utilized similar motor programs to execute the same actions in response to different cues but modified the motor programs during reversal learning. Our study demonstrates that mice can perform meta-learning tasks in VR, thus opening up opportunities for future mechanistic studies.

View Publication Page
04/26/23 | The power of peer networking for improving STEM faculty job applications: a successful pilot programme.
Guardia CM, Kane E, Tebo AG, Sanders AA, Kaya D, Grogan KE
Proceedings. Biological Sciences. 2023 Apr 26;290(1997):20230124. doi: 10.1098/rspb.2023.0124

To attain a faculty position, postdoctoral fellows submit job applications that require considerable time and effort to produce. Although mentors and colleagues review these applications, postdocs rarely receive iterative feedback from reviewers with the breadth of expertise typically found on an academic search committee. To address this gap, we describe an international peer-reviewing programme for postdocs across disciplines to receive reciprocal, iterative feedback on faculty applications. A participant survey revealed that nearly all participants would recommend the programme to others. Furthermore, our programme was more likely to attract postdocs who struggled to find mentoring, possibly because of their identity as a woman or member of an underrepresented population in STEM or because they changed fields. Between 2018 and 2021, our programme provided nearly 150 early career academics with a diverse and supportive community of peer mentors during the difficult search for a faculty position and continues to do so today. As the transition from postdoc to faculty represents the largest 'leak' in the academic pipeline, implementation of similar programmes by universities or professional societies would provide psycho-social support necessary to prevent attrition of individuals from underrepresented populations as well as increase the chances of success for early career academics in their search for independence.

View Publication Page
04/25/23 | PEELing: an integrated and user-centric platform for cell-surface proteomics analysis
Xi Peng , Jody Clements , Zuzhi Jiang , Stephan Preibisch , Jiefu Li
bioRxiv. 2023 Apr 25:. doi: 10.1101/2023.04.21.537871

Proteins localized at the cellular interface mediate cell-cell communication and thus control many aspects of physiology in multicellular organisms. Cell-surface proteomics allows biologists to comprehensively identify proteins on the cell surface and survey their dynamics in physiological and pathological conditions. PEELing provides an integrated package and user-centric web service for analyzing cell-surface proteomics data. With a streamlined and automated workflow, PEELing evaluates data quality using curated references, performs cutoff analysis to remove contaminants, connects to databases for functional annotation, and generates data visualizations. Together with chemical and transgenic tools, PEELing completes a pipeline making cell-surface proteomics analysis handy for every lab.

View Publication Page
04/25/23 | Simultaneous photoactivation and high-speed structural tracking reveal diffusion-dominated motion in the endoplasmic reticulum
Matteo Dora , Christopher J. Obara , Tim Abel , Jennifer Lippincott-Schwarz , David Holcman
bioRxiv. 2023 Apr 25:. doi: 10.1101/2023.04.23.537908

The endoplasmic reticulum (ER) is a structurally complex, membrane-enclosed compartment that stretches from the nuclear envelope to the extreme periphery of eukaryotic cells. The organelle is crucial for numerous distinct cellular processes, but how these processes are spatially regulated within the structure is unclear. Traditional imaging-based approaches to understanding protein dynamics within the organelle are limited by the convoluted structure and rapid movement of molecular components. Here, we introduce a combinatorial imaging and machine learning-assisted image analysis approach to track the motion of photoactivated proteins within the ER of live cells. We find that simultaneous knowledge of the underlying ER structure is required to accurately analyze fluorescently-tagged protein redistribution, and after appropriate structural calibration we see all proteins assayed show signatures of Brownian diffusion-dominated motion over micron spatial scales. Remarkably, we find that in some cells the ER structure can be explored in a highly asymmetric manner, likely as a result of uneven connectivity within the organelle. This remains true independently of the size, topology, or folding state of the fluorescently-tagged molecules, suggesting a potential role for ER connectivity in driving spatially regulated biology in eukaryotes.

View Publication Page
04/25/23 | The big warp: Registration of disparate retinal imaging modalities and an example overlay of ultrawide-field photos and en-face OCTA images.
Thuma TB, Bogovic JA, Gunton KB, Jimenez H, Negreiros B, Pulido JS
PLoS One. 2023 Apr 25;18(4):e0284905. doi: 10.1371/journal.pone.0284905

PURPOSE: To develop an algorithm and scripts to combine disparate multimodal imaging modalities and show its use by overlaying en-face optical coherence tomography angiography (OCTA) images and Optos ultra-widefield (UWF) retinal images using the Fiji (ImageJ) plugin BigWarp.

METHODS: Optos UWF images and Heidelberg en-face OCTA images were collected from various patients as part of their routine care. En-face OCTA images were generated and ten (10) images at varying retinal depths were exported. The Fiji plugin BigWarp was used to transform the Optos UWF image onto the en-face OCTA image using matching reference points in the retinal vasculature surrounding the macula. The images were then overlayed and stacked to create a series of ten combined Optos UWF and en-face OCTA images of increasing retinal depths. The first algorithm was modified to include two scripts that automatically aligned all the en-face OCTA images.

RESULTS: The Optos UWF image could easily be transformed to the en-face OCTA images using BigWarp with common vessel branch point landmarks in the vasculature. The resulting warped Optos image was then successfully superimposed onto the ten Optos UWF images. The scripts more easily allowed for automatic overlay of the images.

CONCLUSIONS: Optos UWF images can be successfully superimposed onto en-face OCTA images using freely available software that has been applied to ocular use. This synthesis of multimodal imaging may increase their potential diagnostic value. Script A is publicly available at and Script B is available at

View Publication Page
04/19/23 | DNA-initiated epigenetic cascades driven by C9orf72 hexanucleotide repeat.
Liu Y, Huang Z, Liu H, Ji Z, Arora A, Cai D, Wang H, Liu M, Simko EA, Zhang Y, Periz G, Liu Z, Wang J
Neuron. 2023 Apr 19;111(8):1205-21. doi: 10.1016/j.neuron.2023.01.022

The C9orf72 hexanucleotide repeat expansion (HRE) is the most frequent genetic cause of the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here, we describe the pathogenic cascades that are initiated by the C9orf72 HRE DNA. The HRE DNA binds to its protein partner DAXX and promotes its liquid-liquid phase separation, which is capable of reorganizing genomic structures. An HRE-dependent nuclear accumulation of DAXX drives chromatin remodeling and epigenetic changes such as histone hypermethylation and hypoacetylation in patient cells. While regulating global gene expression, DAXX plays a key role in the suppression of basal and stress-inducible expression of C9orf72 via chromatin remodeling and epigenetic modifications of the promoter of the major C9orf72 transcript. Downregulation of DAXX or rebalancing the epigenetic modifications mitigates the stress-induced sensitivity of C9orf72-patient-derived motor neurons. These studies reveal a C9orf72 HRE DNA-dependent regulatory mechanism for both local and genomic architectural changes in the relevant diseases.

View Publication Page