Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3869 Publications

Showing 41-50 of 3869 results
02/27/24 | Haploidy-linked cell proliferation defects limit larval growth in Zebrafish
Kan Yaguchi , Daiki Saito , Triveni Menon , Akira Matsura , Takeomi Mizutani , Tomoya Kotani , Sreelaja Nair , Ryota Uehara
bioRxiv. 2024 Feb 27:. doi: 10.1101/2022.05.12.491746

Haploid larvae in non-mammalian vertebrates are lethal with characteristic organ growth retardation collectively called “haploid syndrome.” In contrast to mammals whose haploid intolerance is attributed to imprinting misregulation, the cellular principle of haploidy-linked defects in non-mammalian vertebrates remains unknown. Here, we investigated cellular defects that disrupt the ontogeny of gynogenetic haploid zebrafish larvae. Unlike diploid control, haploid larvae manifested unscheduled cell death at the organogenesis stage, attributed to haploidy-linked p53 upregulation. Moreover, we found that haploid larvae specifically suffered the gradual aggravation of mitotic spindle monopolarization during 1-3 days post fertilization, causing spindle assembly checkpoint-mediated mitotic arrest throughout the entire body. High-resolution imaging revealed that this mitotic defect accompanied the haploidy-linked centrosome loss occurring concomitantly with the gradual decrease in larval cell size. Either resolution of mitotic arrest or depletion of p53 significantly improved organ growth in haploid larvae. Based on these results, we propose that haploidy-linked mitotic defects and cell death are critical cellular causes that limit the larval growth in the haploid state, potentially placing an evolutionary constraint on allowable ploidy status in the non-mammalian vertebrate life cycle.

View Publication Page
02/28/24 | High-Performance Genetically Encoded Green Fluorescent Biosensors for Intracellular l-Lactate.
Hario S, Le GN, Sugimoto H, Takahashi-Yamashiro K, Nishinami S, Toda H, Li S, Marvin JS, Kuroda S, Drobizhev M, Terai T, Nasu Y, Campbell RE
ACS Central Science. 2024 Feb 28;10(2):402-416. doi: 10.1021/acscentsci.3c01250

l-Lactate is a monocarboxylate produced during the process of cellular glycolysis and has long generally been considered a waste product. However, studies in recent decades have provided new perspectives on the physiological roles of l-lactate as a major energy substrate and a signaling molecule. To enable further investigations of the physiological roles of l-lactate, we have developed a series of high-performance (Δ/ = 15 to 30 ), intensiometric, genetically encoded green fluorescent protein (GFP)-based intracellular l-lactate biosensors with a range of affinities. We evaluated these biosensors in cultured cells and demonstrated their application in an preparation of brain tissue. Using these biosensors, we were able to detect glycolytic oscillations, which we analyzed and mathematically modeled.

View Publication Page
02/26/24 | MarShie: a clearing protocol for 3D analysis of single cells throughout the bone marrow at subcellular resolution.
Mertens TF, Liebheit AT, Ehl J, Köhler R, Rakhymzhan A, Woehler A, Katthän L, Ebel G, Liublin W, Kasapi A, Triantafyllopoulou A, Schulz TJ, Niesner RA, Hauser AE
Nature Communincations. 2024 Feb 26;15(1):1764. doi: 10.1038/s41467-024-45827-6

Analyzing immune cell interactions in the bone marrow is vital for understanding hematopoiesis and bone homeostasis. Three-dimensional analysis of the complete, intact bone marrow within the cortex of whole long bones remains a challenge, especially at subcellular resolution. We present a method that stabilizes the marrow and provides subcellular resolution of fluorescent signals throughout the murine femur, enabling identification and spatial characterization of hematopoietic and stromal cell subsets. By combining a pre-processing algorithm for stripe artifact removal with a machine-learning approach, we demonstrate reliable cell segmentation down to the deepest bone marrow regions. This reveals age-related changes in the marrow. It highlights the interaction between CXCR1 cells and the vascular system in homeostasis, in contrast to other myeloid cell types, and reveals their spatial characteristics after injury. The broad applicability of this method will contribute to a better understanding of bone marrow biology.

View Publication Page
02/29/24 | Recommendations for accelerating open preprint peer review to improve the culture of science
Avissar-Whiting M, Belliard F, Bertozzi SM, Brand A, Brown K, Clément-Stoneham G, Dawson S, Dey G, Ecer D, Edmunds SC, Farley A, Fischer TD, Franko M, Fraser JS, Funk K, Ganier C, Harrison M, Hatch A, Hazlett H, Hindle S, Hook DW, Hurst P, Kamoun S, Kiley R, Lacy MM, LaFlamme M, Lawrence R, Lemberger T, Leptin M, Lumb E, MacCallum CJ, Marcum CS, Marinello G, Mendonça A, Monaco S, Neves K, Pattinson D, Polka JK, Puebla I, Rittman M, Royle SJ, Saderi D, Sever R, Shearer K, Spiro JE, Stern B, Taraborelli D, Vale R, Vasquez CG, Waltman L, Watt FM, Weinberg ZY, Williams M
PLOS Biology. 2024 Feb 29;22(2):e3002502. doi: 10.1371/journal.pbio.300250210.1371/journal.pbio.3002502.g001

Peer review is an important part of the scientific process, but traditional peer review at journals is coming under increased scrutiny for its inefficiency and lack of transparency. As preprints become more widely used and accepted, they raise the possibility of rethinking the peer-review process. Preprints are enabling new forms of peer review that have the potential to be more thorough, inclusive, and collegial than traditional journal peer review, and to thus fundamentally shift the culture of peer review toward constructive collaboration. In this Consensus View, we make a call to action to stakeholders in the community to accelerate the growing momentum of preprint sharing and provide recommendations to empower researchers to provide open and constructive peer review for preprints.

View Publication Page
02/28/24 | Sensory neuron population expansion enhances odor tracking without sensitizing projection neurons
Suguru Takagi , Gizem Sancer , Liliane Abuin , S. David Stupski , J. Roman Arguello , Lucia L. Prieto-Godino , David L. Stern , Steeve Cruchet , Raquel Álvarez-Ocaña , Carl F. R. Wienecke , Floris van Breugel , James M. Jeanne , Thomas O. Auer , Richard Benton
bioRxiv. 2024 Feb 28:. doi: 10.1101/2023.09.15.556782

The evolutionary expansion of sensory neuron populations detecting important environmental cues is widespread, but functionally enigmatic. We investigated this phenomenon through comparison of homologous neural pathways of Drosophila melanogaster and its close relative Drosophila sechellia, an extreme specialist for Morinda citrifolia noni fruit. D. sechellia has evolved species-specific expansions in select, noni-detecting olfactory sensory neuron (OSN) populations, through multigenic changes. Activation and inhibition of defined proportions of neurons demonstrate that OSN population increases contribute to stronger, more persistent, noni-odor tracking behavior. These sensory neuron expansions result in increased synaptic connections with their projection neuron (PN) partners, which are conserved in number between species. Surprisingly, having more OSNs does not lead to greater odor-evoked PN sensitivity or reliability. Rather, pathways with increased sensory pooling exhibit reduced PN adaptation, likely through weakened lateral inhibition. Our work reveals an unexpected functional impact of sensory neuron expansions to explain ecologically-relevant, species-specific behavior.

View Publication Page
02/29/24 | The cell-type-specific spatial organization of the anterior thalamic nuclei of the mouse brain.
Kapustina M, Zhang AA, Tsai JY, Bristow BN, Kraus L, Sullivan KE, Erwin SR, Wang L, Stach TR, Clements J, Lemire AL, Cembrowski MS
Cell Reports. 2024 Feb 29;43(3):113842. doi: 10.1016/j.celrep.2024.113842

Understanding the cell-type composition and spatial organization of brain regions is crucial for interpreting brain computation and function. In the thalamus, the anterior thalamic nuclei (ATN) are involved in a wide variety of functions, yet the cell-type composition of the ATN remains unmapped at a single-cell and spatial resolution. Combining single-cell RNA sequencing, spatial transcriptomics, and multiplexed fluorescent in situ hybridization, we identify three discrete excitatory cell-type clusters that correspond to the known nuclei of the ATN and uncover marker genes, molecular pathways, and putative functions of these cell types. We further illustrate graded spatial variation along the dorsomedial-ventrolateral axis for all individual nuclei of the ATN and additionally demonstrate that the anteroventral nucleus exhibits spatially covarying protein products and long-range inputs. Collectively, our study reveals discrete and continuous cell-type organizational principles of the ATN, which will help to guide and interpret experiments on ATN computation and function.

View Publication Page
02/23/24 | Recording physiological history of cells with chemical labeling.
Huppertz M, Wilhelm J, Grenier V, Schneider MW, Falt T, Porzberg N, Hausmann D, Hoffmann DC, Hai L, Tarnawski M, Pino G, Slanchev K, Kolb I, Acuna C, Fenk LM, Baier H, Hiblot J, Johnsson K
Science. 2024 Feb 23;383(6685):890-897. doi: 10.1126/science.adg0812

Recordings of the physiological history of cells provide insights into biological processes, yet obtaining such recordings is a challenge. To address this, we introduce a method to record transient cellular events for later analysis. We designed proteins that become labeled in the presence of both a specific cellular activity and a fluorescent substrate. The recording period is set by the presence of the substrate, whereas the cellular activity controls the degree of the labeling. The use of distinguishable substrates enabled the recording of successive periods of activity. We recorded protein-protein interactions, G protein-coupled receptor activation, and increases in intracellular calcium. Recordings of elevated calcium levels allowed selections of cells from heterogeneous populations for transcriptomic analysis and tracking of neuronal activities in flies and zebrafish.

View Publication Page
02/24/24 | A series of spontaneously blinking dyes for super-resolution microscopy
Katie L. Holland , Sarah E. Plutkis , Timothy A. Daugird , Abhishek Sau , Jonathan B. Grimm , Brian P. English , Qinsi Zheng , Sandeep Dave , Fariha Rahman , Liangqi Xie , Peng Dong , Ariana N. Tkachuk , Timothy A. Brown , Robert H. Singer , Zhe Liu , Catherine G. Galbraith , Siegfried M. Musser , Wesley R. Legant , Luke D. Lavis
bioRxiv. 2024 Feb 24:. doi: 10.1101/2024.02.23.581625

Spontaneously blinking fluorophores permit the detection and localization of individual molecules without reducing buffers or caging groups, thus simplifying single-molecule localization microscopy (SMLM). The intrinsic blinking properties of such dyes are dictated by molecular structure and modulated by environment, which can limit utility. We report a series of tuned spontaneously blinking dyes with duty cycles that span two orders of magnitude, allowing facile SMLM in cells and dense biomolecular structures.

View Publication Page
02/29/24 | An engineered biosensor enables dynamic aspartate measurements in living cells.
Davidsen K, Marvin JS, Aggarwal A, Brown TA, Sullivan LB
Elife. 2024 Feb 23;12:. doi: 10.7554/eLife.90024

Intracellular levels of the amino acid aspartate are responsive to changes in metabolism in mammalian cells and can correspondingly alter cell function, highlighting the need for robust tools to measure aspartate abundance. However, comprehensive understanding of aspartate metabolism has been limited by the throughput, cost, and static nature of the mass spectrometry (MS)-based measurements that are typically employed to measure aspartate levels. To address these issues, we have developed a green fluorescent protein (GFP)-based sensor of aspartate (jAspSnFR3), where the fluorescence intensity corresponds to aspartate concentration. As a purified protein, the sensor has a 20-fold increase in fluorescence upon aspartate saturation, with dose-dependent fluorescence changes covering a physiologically relevant aspartate concentration range and no significant off target binding. Expressed in mammalian cell lines, sensor intensity correlated with aspartate levels measured by MS and could resolve temporal changes in intracellular aspartate from genetic, pharmacological, and nutritional manipulations. These data demonstrate the utility of jAspSnFR3 and highlight the opportunities it provides for temporally resolved and high-throughput applications of variables that affect aspartate levels.

View Publication Page
02/22/24 | CSPP1 stabilizes microtubules by capping both plus and minus ends.
Wang Z, Wang W, Liu S, Yang F, Liu X, Hua S, Zhu L, Xu A, Hill DL, Wang D, Jiang K, Lippincott-Schwartz J, Liu X, Yao X
Journal of Molecular Cell Biology. 2024 Feb 22:. doi: 10.1093/jmcb/mjae007

Although the dynamic instability of microtubules (MTs) is fundamental to many cellular functions, quiescent MTs with unattached free distal ends are commonly present and play important roles in various events to power cellular dynamics. However, how these free MT tips are stabilized remains poorly understood. Here, we report that centrosome and spindle pole protein 1 (CSPP1) caps and stabilizes both plus and minus ends of static MTs. Real-time imaging of laser-ablated MTs in live cells showed deposition of CSPP1 at the newly generated MT ends, whose dynamic instability was concomitantly suppressed. Consistently, MT ends in CSPP1-overexpressing cells were hyper-stabilized, while those in CSPP1-depleted cells were much more dynamic. This CSPP1-elicited stabilization of MTs was demonstrated to be achieved by suppressing intrinsic MT catastrophe and restricting the polymerization. Importantly, CSPP1-bound MTs were resistant to MCAK-mediated depolymerization. These findings delineate a previously uncharacterized CSPP1 activity that integrates MT end capping to orchestrate quiescent MTs.

View Publication Page