Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

1 Publications

Showing 1-1 of 1 results
Your Criteria:
    05/26/95 | Addition of a 29 residue carboxyl-terminal tail converts a simple HMG box-containing protein into a transcriptional activator.
    Dairaghi DJ, Shadel GS, Clayton DA
    Journal of Molecular Biology. 1995 May 26;249(1):11-28. doi: 10.1101/gad.1352105

    Human mitochondrial transcription factor A (h-mtTFA) is essential for initiation of transcription from the two promoters located in the displacement-loop region of human mitochondrial DNA. This 25 kDa protein contains two tandem, HMG box DNA-binding domains separated by a 27 amino acid residue linker region and followed by a 25 residue carboxyl-terminal tail; both the linker and tail are rich in basic amino acid residues. Mutational analysis of h-mtTFA revealed that the tail region is important for specific DNA recognition and essential for transcriptional activation. The critical role of the human tail in transcription was confirmed by constructing chimeric proteins that exchanged similar regions between h-mtTFA and its Saccharomyces cerevisiae homolog, sc-mtTFA. Wild-type sc-mtTFA is unable to activate transcription from the human mitochondrial light-strand promoter (LSP). Addition of the human tail region to sc-mtTFA conferred LSP-specific promoter activation. In all of the different h-mtTFA mutations tested, transcriptional activation was correlated with specific DNA-binding activity, suggesting that these two functions may be inseparable, a situation entirely consistent with previous mutational analyses of human mitochondrial promoters.

    View Publication Page