Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

2 Publications

Showing 1-2 of 2 results
Your Criteria:

    Adult insects achieve their final form shortly after adult eclosion by the combined effects of specialized behaviors that generate increased blood pressure, which causes cuticular expansion, and hormones, which plasticize and then tan the cuticle. We examined the molecular mechanisms contributing to these processes in Drosophila by analyzing mutants for the rickets gene. These flies fail to initiate the behavioral and tanning processes that normally follow ecdysis. Sequencing of rickets mutants and STS mapping of deficiencies confirmed that rickets encodes the glycoprotein hormone receptor DLGR2. Although rickets mutants produce and release the insect-tanning hormone bursicon, they do not melanize when injected with extracts containing bursicon. In contrast, mutants do melanize in response to injection of an analog of cyclic AMP, the second messenger for bursicon. Hence, rickets appears to encode a component of the bursicon response pathway, probably the bursicon receptor itself. Mutants also have a behavioral deficit in that they fail to initiate the behavioral program for wing expansion. A set of decapitation experiments utilizing rickets mutants and flies that lack cells containing the neuropeptide eclosion hormone, reveals a multicomponent control to the activation of this behavioral program.

    View Publication Page
    Tjian Lab
    09/01/02 | Redundant role of tissue-selective TAF(II)105 in B lymphocytes.
    Freiman RN, Albright SR, Chu LE, Zheng S, Liang H, Sha WC, Tjian R
    Molecular and Cellular Biology. 2002 Sep;22(18):6564-72. doi: 10.1073/pnas.1100640108

    Regulated gene expression is a complex process achieved through the function of multiple protein factors acting in concert at a given promoter. The transcription factor TFIID is a central component of the machinery regulating mRNA synthesis by RNA polymerase II. This large multiprotein complex is composed of the TATA box binding protein (TBP) and several TBP-associated factors (TAF(II)s). The recent discovery of multiple TBP-related factors and tissue-specific TAF(II)s suggests the existence of specialized TFIID complexes that likely play a critical role in regulating transcription in a gene- and tissue-specific manner. The tissue-selective factor TAF(II)105 was originally identified as a component of TFIID derived from a human B-cell line. In this report we demonstrate the specific induction of TAF(II)105 in cultured B cells in response to bacterial lipopolysaccharide (LPS). To examine the in vivo role of TAF(II)105, we have generated TAF(II)105-null mice by homologous recombination. Here we show that B-lymphocyte development is largely unaffected by the absence of TAF(II)105. TAF(II)105-null B cells can proliferate in response to LPS, produce relatively normal levels of resting antibodies, and can mount an immune response by producing antigen-specific antibodies in response to immunization. Taken together, we conclude that the function of TAF(II)105 in B cells is likely redundant with the function of other TAF(II)105-related cellular proteins.

    View Publication Page