Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
general_search_page-panel_pane_1 | views_panes

7 Publications

Showing 1-7 of 7 results
Your Criteria:
    02/24/03 | Microwave oven synthesis of esters promoted by imidazole.
    Hirose T, Kopek BG, Wang Z, Yusa R, Baldwin BW
    Tetrahedron Letters. 2003 Feb 24;44:1831-3

    Using imidazole as promotion agent, primary, secondary and phenolic alcohol compounds were esterified with aliphatic and aromatic carboxylic acid anhydrides. Heating a ternary mixture of alcohol, anhydride and imidazole in an unmodified microwave oven produced esters in low to high yields, depending on the steric bulk of the alcohol.

    View Publication Page
    Murphy Lab

    Cyclic nucleotide-gated channels (CNGCs) on the dendritic cilia of olfactory receptor neurons (ORNs) are critical for sensory transduction in the olfactory system. Do CNGCs also play a role in the axons and/or nerve terminals of ORNs? We find that the cyclic nucleotides cAMP and cGMP can both facilitate and depress synaptic transmission between olfactory nerve fibers and their targets in olfactory bulb glomeruli. Cyclic nucleotides increase intracellular Ca(2+) in ORN terminals and enhance spontaneous transmitter release; at higher concentrations, cyclic nucleotides depress evoked transmission by altering olfactory nerve excitability. Cyclic nucleotides have no effect on transmission or nerve excitability, however, in mice lacking olfactory CNGCs. Taken together, our results identify a novel role for presynaptic CNGCs in modulating neurotransmission.

    View Publication Page
    Pastalkova LabKeleman Lab
    02/18/03 | Operant behavior can be triggered by the position of the rat relative to objects rotating on an inaccessible platform.
    Pastalkova E, Kelemen E, Bures J
    Proceedings of the National Academy of Sciences of the United States of America. 2003 Feb 18;100(4):2094-9. doi: 10.1073/pnas.0438002100

    The present study describes a task testing the ability of rats to trigger operant behavior by their relative spatial position to inaccessible rotating objects. Rats were placed in a Skinner box with a transparent front wall through which they could observe one or two adjacent objects fixed on a slowly rotating arena (d = 1 m) surrounded by an immobile black cylinder. The direction of arena rotation was alternated at a sequence of different time intervals. Rats were reinforced for the first bar-press that was emitted when a radius separating the two adjacent objects or dividing a single object into two halves (pointing radius) entered a 60 degrees sector of its circular trajectory defined with respect to the stationary Skinner box (reward sector). Well trained rats emitted 62.1 +/- 3.6% of responses in a 60 degrees sector preceding the reward sector and in the first 30 degrees of the reward sector. Response rate increased only when the pointing radius was approaching the reward sector, regardless of the time elapsed from the last reward. In the extinction session, when no reward was delivered, rats responded during the whole passage of the pointing radius through the former reward sector and spontaneously decreased responding after the pointing radius left this area. This finding suggests that rats perceived the reward sector as a continuous single region. The same results were obtained when the Skinner box with the rat was orbiting around the immobile scene. It is concluded that rats can recognize and anticipate their position relative to movable objects.

    View Publication Page
    02/15/03 | A comparison of parthenogenetic and sexual embryogenesis of the pea aphid Acyrthosiphon pisum (Hemiptera: Aphidoidea).
    Miura T, Braendle C, Shingleton A, Sisk G, Kambhampati S, Stern DL
    J Exp Zool B Mol Dev Evol. 2003 Feb 15;295(1):59-81. doi: 10.1002/jez.b.3

    Aphids exhibit divergent modes of embryogenesis during the sexual and asexual phases of the life cycle. To explore how a single genome can give rise to these alternative developmental modes, we have initiated embryological studies of the pea aphid, Acyrthosiphon pisum. Here we present a detailed description of parthenogenetic, viviparous embryonic development in the pea aphid. We compare and contrast development of the parthenogenetic embryo with that of the embryo resulting from sexual reproduction. The primary difference between the embryos is the scale on which development occurs: early parthenogenetic development occurs in a volume approximately three orders of magnitude smaller than the sexual egg, largely because of the apparent absence of yolk in the parthenogenetic egg. This results in a drastically different duration of syncytial energid cleavage and, presumably, patterning processes in the two embryos must act at scales that differ by orders of magnitude. The eggs also develop on time scales that differ approximately by an order of magnitude and the timing of the embryonic movements, collectively called blastokinesis, have temporally shifted relative to growth of the embryo. In addition, the endosymbiotic bacteria are transferred from mother to embryo in different ways in the two embryos. Finally, the function of the serosa has diverged greatly in the two embryos: in the sexual egg the serosa deposits a thick cuticle that protects the egg, whereas the serosa of the parthenogenetic embryo is greatly reduced and its function is unclear. The pea aphid is a useful model system for examining how a single genome has evolved to allow divergent modes of development.

    View Publication Page
    Zuker Lab
    02/07/03 | Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways.
    Zhang Y, Hoon MA, Chandrashekar J, Mueller KL, Cook B, Wu D, Zuker CS, Ryba NJ
    Cell. 2003 Feb 7;112(3):293-301

    Mammals can taste a wide repertoire of chemosensory stimuli. Two unrelated families of receptors (T1Rs and T2Rs) mediate responses to sweet, amino acids, and bitter compounds. Here, we demonstrate that knockouts of TRPM5, a taste TRP ion channel, or PLCbeta2, a phospholipase C selectively expressed in taste tissue, abolish sweet, amino acid, and bitter taste reception, but do not impact sour or salty tastes. Therefore, despite relying on different receptors, sweet, amino acid, and bitter transduction converge on common signaling molecules. Using PLCbeta2 taste-blind animals, we then examined a fundamental question in taste perception: how taste modalities are encoded at the cellular level. Mice engineered to rescue PLCbeta2 function exclusively in bitter-receptor expressing cells respond normally to bitter tastants but do not taste sweet or amino acid stimuli. Thus, bitter is encoded independently of sweet and amino acids, and taste receptor cells are not broadly tuned across these modalities.

    View Publication Page
    02/07/03 | TGF-beta signaling activates steroid hormone receptor expression during neuronal remodeling in the Drosophila brain.
    Zheng X, Wang J, Haerry TE, Wu AY, Martin J, O’Connor MB, Lee CJ, Lee T
    Cell. 2003 Feb 7;112(3):303-15

    Metamorphosis of the Drosophila brain involves pruning of many larval-specific dendrites and axons followed by outgrowth of adult-specific processes. From a genetic mosaic screen, we recovered two independent mutations that block neuronal remodeling in the mushroom bodies (MBs). These phenotypically indistinguishable mutations affect Baboon function, a Drosophila TGF-beta/activin type I receptor, and dSmad2, its downstream transcriptional effector. We also show that Punt and Wit, two type II receptors, act redundantly in this process. In addition, knocking out dActivin around the mid-third instar stage interferes with remodeling. Binding of the insect steroid hormone ecdysone to distinct ecdysone receptor isoforms induces different metamorphic responses in various larval tissues. Interestingly, expression of the ecdysone receptor B1 isoform (EcR-B1) is reduced in activin pathway mutants, and restoring EcR-B1 expression significantly rescues remodeling defects. We conclude that the Drosophila Activin signaling pathway mediates neuronal remodeling in part by regulating EcR-B1 expression.

    View Publication Page
    Tjian Lab
    02/01/03 | Bromodomains mediate an acetyl-histone encoded antisilencing function at heterochromatin boundaries.
    Ladurner AG, Inouye C, Jain R, Tjian R
    Molecular Cell. 2003 Feb;11(2):365-76. doi: 10.1073/pnas.1100640108

    Bromodomains bind acetylated histone H4 peptides in vitro. Since many chromatin remodeling complexes and the general transcription factor TFIID contain bromodomains, they may link histone acetylation to increased transcription. Here we show that yeast Bdf1 bromodomains recognize endogenous acetyl-histone H3/H4 as a mechanism for chromatin association in vivo. Surprisingly, deletion of BDF1 or a Bdf1 mutation that abolishes histone binding leads to transcriptional downregulation of genes located at heterochromatin-euchromatin boundaries. Wild-type Bdf1 protein imposes a physical barrier to the spreading of telomere- and mating-locus-proximal SIR proteins. Biochemical experiments indicate that Bdf1 competes with the Sir2 deacetylase for binding to acetylated histone H4. These data suggest an active role for Bdf1 in euchromatin maintenance and antisilencing through a histone tail-encoded boundary function.

    View Publication Page