Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

2 Publications

Showing 1-2 of 2 results
Your Criteria:
    Pastalkova Lab
    02/25/04 | Object-location memory impairment in patients with thermal lesions to the right or left hippocampus.
    Stepankova K, Fenton AA, Pastalkova E, Kalina M, Bohbot VD
    Neuropsychologia. 2004 Feb 25;42(8):1017-28. doi: 10.1016/j.neuropsychologia.2004.01.002

    Memory for object-location was investigated by testing subjects with small unilateral thermolesions to the medial temporal lobe using small-scale 2D (Abstract) or large-scale 3D (Real) recall conditions. Four patients with lesions of the left hippocampus (LH), 10 patients with damage to the right hippocampus (RH) and 9 matched normal controls (NC) were tested. Six task levels were presented in a pseudorandom order. During each level, subjects viewed one to six different objects on the floor of a circular curtained arena 2.90 m in diameter for 10 s. Recall was tested by marking the locations of objects on a map of the arena (Abstract recall) and then by replacing the objects in the arena (Real recall). Two component errors were studied by calculating the Location Error (LE), independent of the object identity and the configuration error by finding the best match to the presented configuration. The RH group was impaired relative to the NC for nearly all combinations of recall and error types. An impairment was observed in this group even for one object and it deepened sharply with an increasing object number. Damage to the right perirhinal or parahippocampal cortices did not add to the impairment. Deficits in the LH group were also observed, but less consistently. The data indicate that spatial memory is strongly but not exclusively lateralised to the right medial temporal lobe.

    View Publication Page
    Magee Lab
    02/01/04 | LTP is accompanied by an enhanced local excitability of pyramidal neuron dendrites.
    Frick A, Magee J, Johnston D
    Nature Neuroscience. 2004 Feb;7(2):126-35. doi: 10.1002/cbic.201000254

    The propagation and integration of signals in the dendrites of pyramidal neurons is regulated, in part, by the distribution and biophysical properties of voltage-gated ion channels. It is thus possible that any modification of these channels in a specific part of the dendritic tree might locally alter these signaling processes. Using dendritic and somatic whole-cell recordings, combined with calcium imaging in rat hippocampal slices, we found that the induction of long-term potentiation (LTP) was accompanied by a local increase in dendritic excitability that was dependent on the activation of NMDA receptors. These changes favored the back-propagation of action potentials into this dendritic region with a subsequent boost in the Ca(2+) influx. Dendritic cell-attached patch recordings revealed a hyperpolarized shift in the inactivation curve of transient, A-type K(+) currents that can account for the enhanced excitability. These results suggest an important mechanism associated with LTP for shaping signal processing and controlling dendritic function.

    View Publication Page