Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom


facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

67 Publications

Showing 51-60 of 67 results
Your Criteria:
    04/01/05 | The origin of a mutualism: a morphological trait promoting the evolution of ant-aphid mutualisms.
    Shingleton AW, Stern DL, Foster WA
    Evolution. 2005 Apr;59(4):921-6

    Mutualisms are mutually beneficial interactions between species and are fundamentally important at all levels of biological organization. It is not clear, however, why one species participates in a particular mutualism whereas another does not. Here we show that pre-existing traits can dispose particular species to evolve a mutualistic interaction. Combining morphological, ecological, and behavioral data in a comparative analysis, we show that resource use in Chaitophorus aphids (Hemiptera: Aphididae) modulates the origin of their mutualism with ants. We demonstrate that aphid species that feed on deeper phloem elements have longer mouthparts, that this inhibits their ability to withdraw their mouthparts and escape predators and that, consequently, this increases their need for protection by mutualist ants.

    View Publication Page
    03/25/05 | Engineering a selectable marker for hyperthermophiles.
    Brouns SJ, Wu H, Akerboom J, Turnbull AP, de Vos WM, van der Oost J
    The Journal of Biological Chemistry. 2005 Mar 25;280(12):11422-31. doi: 10.1074/jbc.M413623200

    Limited thermostability of antibiotic resistance markers has restricted genetic research in the field of extremely thermophilic Archaea and bacteria. In this study, we used directed evolution and selection in the thermophilic bacterium Thermus thermophilus HB27 to find thermostable variants of a bleomycin-binding protein from the mesophilic bacterium Streptoalloteichus hindustanus. In a single selection round, we identified eight clones bearing five types of double mutated genes that provided T. thermophilus transformants with bleomycin resistance at 77 degrees C, while the wild-type gene could only do so up to 65 degrees C. Only six different amino acid positions were altered, three of which were glycine residues. All variant proteins were produced in Escherichia coli and analyzed biochemically for thermal stability and functionality at high temperature. A synthetic mutant resistance gene with low GC content was designed that combined four substitutions. The encoded protein showed up to 17 degrees C increased thermostability and unfolded at 85 degrees C in the absence of bleomycin, whereas in its presence the protein unfolded at 100 degrees C. Despite these highly thermophilic properties, this mutant was still able to function normally at mesophilic temperatures in vivo. The mutant protein was co-crystallized with bleomycin, and the structure of the binary complex was determined to a resolution of 1.5 A. Detailed structural analysis revealed possible molecular mechanisms of thermostabilization and enhanced antibiotic binding, which included the introduction of an intersubunit hydrogen bond network, improved hydrophobic packing of surface indentations, reduction of loop flexibility, and alpha-helix stabilization. The potential applicability of the thermostable selection marker is discussed.

    View Publication Page
    03/22/05 | Genetic variation for an aphid wing polyphenism is genetically linked to a naturally occurring wing polymorphism.
    Braendle C, Friebe I, Caillaud MC, Stern DL
    Proc Biol Sci. 2005 Mar 22;272(1563):657-64. doi: 10.1098/rspb.2004.2995

    Many polyphenisms are examples of adaptive phenotypic plasticity where a single genotype produces distinct phenotypes in response to environmental cues. Such alternative phenotypes occur as winged and wingless parthenogenetic females in the pea aphid (Acyrthosiphon pisum). However, the proportion of winged females produced in response to a given environmental cue varies between clonal genotypes. Winged and wingless phenotypes also occur in males of the sexual generation. In contrast to parthenogenetic females, wing production in males is environmentally insensitive and controlled by the sex-linked, biallelic locus, aphicarus (api). Hence, environmental or genetic cues induce development of winged and wingless phenotypes at different stages of the pea aphid life cycle. We have tested whether allelic variation at the api locus explains genetic variation in the propensity to produce winged females. We assayed clones from an F2 cross that were heterozygous or homozygous for alternative api alleles for their propensity to produce winged offspring. We found that clones with different api genotypes differed in their propensity to produce winged offspring. The results indicate genetic linkage of factors controlling the female wing polyphenism and male wing polymorphism. This finding is consistent with the hypothesis that genotype by environment interaction at the api locus explains genetic variation in the environmentally cued wing polyphenism.

    View Publication Page
    Zuker Lab
    03/10/05 | The receptors and coding logic for bitter taste.
    Mueller KL, Hoon MA, Erlenbach I, Chandrashekar J, Zuker CS, Ryba NJ
    Nature. 2005 Mar 10;434(7030):225-9. doi: 10.1038/nature03352

    The sense of taste provides animals with valuable information about the nature and quality of food. Bitter taste detection functions as an important sensory input to warn against the ingestion of toxic and noxious substances. T2Rs are a family of approximately 30 highly divergent G-protein-coupled receptors (GPCRs) that are selectively expressed in the tongue and palate epithelium and are implicated in bitter taste sensing. Here we demonstrate, using a combination of genetic, behavioural and physiological studies, that T2R receptors are necessary and sufficient for the detection and perception of bitter compounds, and show that differences in T2Rs between species (human and mouse) can determine the selectivity of bitter taste responses. In addition, we show that mice engineered to express a bitter taste receptor in ’sweet cells’ become strongly attracted to its cognate bitter tastants, whereas expression of the same receptor (or even a novel GPCR) in T2R-expressing cells resulted in mice that are averse to the respective compounds. Together these results illustrate the fundamental principle of bitter taste coding at the periphery: dedicated cells act as broadly tuned bitter sensors that are wired to mediate behavioural aversion.

    View Publication Page
    Pastalkova Lab
    03/02/05 | Tetrodotoxin infusions into the dorsal hippocampus block non-locomotor place recognition.
    Klement D, Pastalkova E, Fenton AA
    Hippocampus. 2005 Mar 2;15(4):460-71. doi: 10.1002/hipo.20072

    The hippocampus is critical for navigation in an open field. One component of this navigation requires the subject to recognize the target place using distal cues. The experiments presented in this report tested whether blocking hippocampal function would impair open field place recognition. Hungry rats were trained to press a lever on a feeder for food. In Experiment 1, they were passively transported with the feeder along a circular trajectory. Lever pressing was reinforced only if the feeder was passing through a 60 degrees -wide sector. Thus, rats preferentially lever pressed in the vicinity of the reward sector indicating that they recognized its location. Tetrodotoxin (TTX) infusions aimed at the dorsal hippocampi caused rats to substantially increase lever pressing with no preference for any region. The aim of Experiment 2 was to determine whether the TTX injections caused a loss of place recognition or a general increase of lever pressing. A separate group of rats was conditioned in a stationary apparatus to press the lever in response to a light. The TTX injections did not abolish preferential lever pressing in response to light. Lever pressing increased less than half as much as the TTX-induced increase in Experiment 1. When these animals with functional hippocampi could not determine the rewarded period because the light was always off, lever pressing increased much more and was similar to the TTX-induced increase in Experiment 1. We conclude that the TTX inactivation of the hippocampi impaired the ability to recognize the reward place.

    View Publication Page
    03/01/05 | Highly nonrandom features of synaptic connectivity in local cortical circuits.
    Song S, Sjöström PJ, Reigl M, Nelson S, Chklovskii DB
    PLoS Biology. 2005 Mar;3(3):e68. doi: 10.1016/j.tins.2005.05.006

    How different is local cortical circuitry from a random network? To answer this question, we probed synaptic connections with several hundred simultaneous quadruple whole-cell recordings from layer 5 pyramidal neurons in the rat visual cortex. Analysis of this dataset revealed several nonrandom features in synaptic connectivity. We confirmed previous reports that bidirectional connections are more common than expected in a random network. We found that several highly clustered three-neuron connectivity patterns are overrepresented, suggesting that connections tend to cluster together. We also analyzed synaptic connection strength as defined by the peak excitatory postsynaptic potential amplitude. We found that the distribution of synaptic connection strength differs significantly from the Poisson distribution and can be fitted by a lognormal distribution. Such a distribution has a heavier tail and implies that synaptic weight is concentrated among few synaptic connections. In addition, the strengths of synaptic connections sharing pre- or postsynaptic neurons are correlated, implying that strong connections are even more clustered than the weak ones. Therefore, the local cortical network structure can be viewed as a skeleton of stronger connections in a sea of weaker ones. Such a skeleton is likely to play an important role in network dynamics and should be investigated further.

    View Publication Page
    Murphy Lab
    03/01/05 | Intraglomerular inhibition: signaling mechanisms of an olfactory microcircuit.
    Murphy GJ, Darcy DP, Isaacson JS
    Nature Neuroscience. 2005 Mar;8(3):354-64. doi: 10.1038/nn1403

    Microcircuits composed of principal neuron and interneuron dendrites have an important role in shaping the representation of sensory information in the olfactory bulb. Here we establish the physiological features governing synaptic signaling in dendrodendritic microcircuits of olfactory bulb glomeruli. We show that dendritic gamma-aminobutyric acid (GABA) release from periglomerular neurons mediates inhibition of principal tufted cells, retrograde inhibition of sensory input and lateral signaling onto neighboring periglomerular cells. We find that L-type dendritic Ca(2+) spikes in periglomerular cells underlie dendrodendritic transmission by depolarizing periglomerular dendrites and activating P/Q type channels that trigger GABA release. Ca(2+) spikes in periglomerular cells are evoked by powerful excitatory inputs from a single principal cell, and glutamate release from the dendrites of single principal neurons activates a large ensemble of periglomerular cells.

    View Publication Page
    Cardona Lab
    03/01/05 | The embryonic development of the triclad Schmidtea polychroa.
    Cardona A, Hartenstein V, Romero R
    Development Genes & Evolution. 2005 Mar;215(3):109-31. doi: 10.1007/s00427-004-0455-8

    Triclad flatworms are well studied for their regenerative properties, yet little is known about their embryonic development. We here describe the embryonic development of the triclaty 120d Schmidtea polychroa, using histological and immunocytochemical analysis of whole-mount preparations and sections. During early cleavage (stage 1), yolk cells fuse and enclose the zygote into a syncytium. The zygote divides into blastomeres that dissociate and migrate into the syncytium. During stage 2, a subset of blastomeres differentiate into a transient embryonic epidermis that surrounds the yolk syncytium, and an embryonic pharynx. Other blastomeres divide as a scattered population of cells in the syncytium. During stage 3, the embryonic pharynx imbibes external yolk cells and a gastric cavity is formed in the center of the syncytium. The syncytial yolk and the blastomeres contained within it are compressed into a thin peripheral rind. From a location close to the embryonic pharynx, which defines the posterior pole, bilaterally symmetric ventral nerve cord pioneers extend forward. Stage 4 is characterized by massive proliferation of embryonic cells. Large yolk-filled cells lining the syncytium form the gastrodermis. During stage 5 the external syncytial yolk mantle is resorbed and the embryonic cells contained within differentiate into an irregular scaffold of muscle and nerve cells. Epidermal cells differentiate and replace the transient embryonic epidermis. Through stages 6-8, the embryo adopts its worm-like shape, and loosely scattered populations of differentiating cells consolidate into structurally defined organs. Our analysis reveals a picture of S. polychroa embryogenesis that resembles the morphogenetic events underlying regeneration.

    View Publication Page
    02/05/05 | Natural selection and developmental constraints in the evolution of allometries.
    Frankino WA, Zwaan BJ, Stern DL, Brakefield PM
    Science. 2005 Feb 4;307(5710):718-20. doi: 10.1126/science.1105409

    In animals, scaling relationships between appendages and body size exhibit high interspecific variation but low intraspecific variation. This pattern could result from natural selection for specific allometries or from developmental constraints on patterns of differential growth. We performed artificial selection on the allometry between forewing area and body size in a butterfly to test for developmental constraints, and then used the resultant increased range of phenotypic variation to quantify natural selection on the scaling relationship. Our results show that the short-term evolution of allometries is not limited by developmental constraints. Instead, scaling relationships are shaped by strong natural selection.

    View Publication Page
    Tjian Lab
    02/01/05 | Structural studies of the human PBAF chromatin-remodeling complex.
    Leschziner AE, Lemon B, Tjian R, Nogales E
    Structure. 2005 Feb;13(2):267-75. doi: 10.1073/pnas.1100640108

    ATP-dependent chromatin remodeling is one of the central processes responsible for imparting fluidity to chromatin and thus regulating DNA transactions. Although knowledge on this process is accumulating rapidly, the basic mechanism (or mechanisms) by which the remodeling complexes alter the structure of a nucleosome is not yet understood. Structural information on these macromolecular machines should aid in interpreting the biochemical and genetic data; to this end, we have determined the structure of the human PBAF ATP-dependent chromatin-remodeling complex preserved in negative stain by electron microscopy and have mapped the nucleosome binding site using two-dimensional (2D) image analysis. PBAF has an overall C-shaped architecture–with a larger density to which two smaller knobs are attached–surrounding a central cavity; one of these knobs appears to be flexible and occupies different positions in each of the structures determined. The 2D analysis of PBAF:nucleosome complexes indicates that the nucleosome binds in the central cavity.

    View Publication Page