Filter
Associated Lab
- Ahrens Lab (3) Apply Ahrens Lab filter
- Betzig Lab (8) Apply Betzig Lab filter
- Card Lab (2) Apply Card Lab filter
- Cardona Lab (1) Apply Cardona Lab filter
- Druckmann Lab (1) Apply Druckmann Lab filter
- Eddy/Rivas Lab (2) Apply Eddy/Rivas Lab filter
- Fetter Lab (4) Apply Fetter Lab filter
- Fitzgerald Lab (1) Apply Fitzgerald Lab filter
- Gonen Lab (6) Apply Gonen Lab filter
- Harris Lab (1) Apply Harris Lab filter
- Heberlein Lab (3) Apply Heberlein Lab filter
- Hess Lab (2) Apply Hess Lab filter
- Ji Lab (4) Apply Ji Lab filter
- Kainmueller Lab (1) Apply Kainmueller Lab filter
- Keller Lab (3) Apply Keller Lab filter
- Lavis Lab (4) Apply Lavis Lab filter
- Looger Lab (3) Apply Looger Lab filter
- Magee Lab (4) Apply Magee Lab filter
- Murphy Lab (1) Apply Murphy Lab filter
- Pastalkova Lab (3) Apply Pastalkova Lab filter
- Reiser Lab (1) Apply Reiser Lab filter
- Riddiford Lab (5) Apply Riddiford Lab filter
- Romani Lab (2) Apply Romani Lab filter
- Rubin Lab (4) Apply Rubin Lab filter
- Saalfeld Lab (2) Apply Saalfeld Lab filter
- Satou Lab (1) Apply Satou Lab filter
- Schreiter Lab (3) Apply Schreiter Lab filter
- Sgro Lab (1) Apply Sgro Lab filter
- Shroff Lab (6) Apply Shroff Lab filter
- Spruston Lab (3) Apply Spruston Lab filter
- Stern Lab (4) Apply Stern Lab filter
- Sternson Lab (1) Apply Sternson Lab filter
- Svoboda Lab (6) Apply Svoboda Lab filter
- Tjian Lab (7) Apply Tjian Lab filter
- Truman Lab (2) Apply Truman Lab filter
- Turner Lab (1) Apply Turner Lab filter
- Wu Lab (1) Apply Wu Lab filter
- Zuker Lab (1) Apply Zuker Lab filter
Publication Date
- December 2008 (11) Apply December 2008 filter
- November 2008 (8) Apply November 2008 filter
- October 2008 (7) Apply October 2008 filter
- September 2008 (12) Apply September 2008 filter
- August 2008 (10) Apply August 2008 filter
- July 2008 (14) Apply July 2008 filter
- June 2008 (13) Apply June 2008 filter
- May 2008 (8) Apply May 2008 filter
- April 2008 (7) Apply April 2008 filter
- March 2008 (16) Apply March 2008 filter
- February 2008 (13) Apply February 2008 filter
- January 2008 (21) Apply January 2008 filter
- Remove 2008 filter 2008
Type of Publication
140 Publications
Showing 61-70 of 140 resultsSeveral aspects of locomotor control have been ascribed to the central complex of the insect brain; however, the role of distinct substructures of this complex is not well known. The tay bridge1 (tay1) mutant of Drosophila melanogaster was originally isolated on the basis of reduced walking speed and activity. In addition, tay1 is defective in the compensation of rotatory stimuli during walking and histologically, tay1 causes a mid-sagittal constriction of the protocerebral bridge, a constituent of the central complex. Cloning of the tay gene revealed that it encodes a novel protein with no significant homology to any known protein. To associate the behavioral phenotypes with the anatomical defect in the protocerebral bridge, we used different driver lines to express the tay cDNA in various neuronal subpopulations of the central brain in tay1-mutant flies. These experiments showed an association of the aberrant walking speed and activity with the structural defect in the protocerebral bridge. In contrast, the compensation of rotatory stimuli during walking was rescued without a restoration of the protocerebral bridge. The results of our differential rescue approach are supported by neuronal silencing experiments using conditional tetanus toxin expression in the same subset of neurons. These findings show for the first time that the walking speed and activity is controlled by different substructures of the central brain than the compensatory locomotion for rotatory stimuli.
Do general principles govern the genetic causes of phenotypic evolution? One promising idea is that mutations in cis-regulatory regions play a predominant role in phenotypic evolution because they can alter gene activity without causing pleiotropic effects. Recent evidence that revealed the genetic basis of pigmentation pattern evolution in Drosophila santomea supports this notion. Multiple mutations that disrupt an abdominal enhancer of the pleiotropic gene tan partly explain the reduced pigmentation observed in this species.
Flexible goal-driven orientation requires that the position of a target be stored, especially in case the target moves out of sight. The capability to retain, recall and integrate such positional information into guiding behaviour has been summarized under the term spatial working memory. This kind of memory contains specific details of the presence that are not necessarily part of a long-term memory. Neurophysiological studies in primates indicate that sustained activity of neurons encodes the sensory information even though the object is no longer present. Furthermore they suggest that dopamine transmits the respective input to the prefrontal cortex, and simultaneous suppression by GABA spatially restricts this neuronal activity. Here we show that Drosophila melanogaster possesses a similar spatial memory during locomotion. Using a new detour setup, we show that flies can remember the position of an object for several seconds after it has been removed from their environment. In this setup, flies are temporarily lured away from the direction towards their hidden target, yet they are thereafter able to aim for their former target. Furthermore, we find that the GABAergic (stainable with antibodies against GABA) ring neurons of the ellipsoid body in the central brain are necessary and their plasticity is sufficient for a functional spatial orientation memory in flies. We also find that the protein kinase S6KII (ignorant) is required in a distinct subset of ring neurons to display this memory. Conditional expression of S6KII in these neurons only in adults can restore the loss of the orientation memory of the ignorant mutant. The S6KII signalling pathway therefore seems to be acutely required in the ring neurons for spatial orientation memory in flies.
Mammalian herbivores profoundly influence plant-dwelling insects [1]. Most studies have focused on the indirect effect of herbivory on insect populations via damage to the host plant [2,3]. Many insects, however, are in danger of being inadvertently ingested during herbivore feeding. Here, we report that pea aphids (Acyrthosiphon pisum) are able to sense the elevated heat and humidity of the breath of an approaching herbivore and thus salvage most of the colony by simultaneously dropping off the plant in large numbers immediately before the plant is eaten. Dropping entails the risk of losing the host plant and becoming desiccated or preyed upon on the ground [4,5], yet pea aphids may sporadically drop when threatened by insect enemies [6]. The immediate mass dropping, however, is an adaptation to the potential destructive impact of mammalian herbivory on the entire aphid colony. The combination of heat and humidity serves as a reliable cue to impending mammalian herbivory, enabling the aphids to avoid unnecessary dropping. No defensive behavior against incidental predation by herbivores has ever been demonstrated. The pea aphids' highly adaptive escape behavior uniquely demonstrates the strength of the selective pressure large mammalian herbivores impose on insect herbivores.
Drosophila mushroom body (MB) gamma neurons undergo axon pruning during metamorphosis through a process of localized degeneration of specific axon branches. Developmental axon degeneration is initiated by the steroid hormone ecdysone, acting through a nuclear receptor complex composed of USP (ultraspiracle) and EcRB1 (ecdysone receptor B1) to regulate gene expression in MB gamma neurons. To identify ecdysone-dependent gene expression changes in MB gamma neurons at the onset of axon pruning, we use laser capture microdissection to isolate wild-type and mutant MB neurons in which EcR (ecdysone receptor) activity is genetically blocked, and analyze expression changes by microarray. We identify several molecular pathways that are regulated in MB neurons by ecdysone. The most striking observation is the upregulation of genes involved in the UPS (ubiquitin-proteasome system), which is cell autonomously required for gamma neuron pruning. In addition, we characterize the function of Boule, an evolutionarily conserved RNA-binding protein previously implicated in spermatogenesis in flies and vertebrates. boule expression is downregulated by ecdysone in MB neurons at the onset of pruning, and forced expression of Boule in MB gamma neurons is sufficient to inhibit axon pruning. This activity is dependent on the RNA-binding domain of Boule and a conserved DAZ (deleted in azoospermia) domain implicated in interactions with other RNA-binding proteins. However, loss of Boule does not result in obvious defects in axon pruning or morphogenesis of MB neurons, suggesting that it acts redundantly with other ecdyonse-regulated genes. We propose a novel function for Boule in the CNS as a negative regulator of developmental axon pruning.
Dopamine has been implicated in mediating contextual modulation of motor behaviors and learning in many species. In songbirds, dopamine may act on the basal ganglia nucleus Area X to influence the neural activity that contributes to vocal learning and contextual changes in song variability. Neurons in midbrain dopamine centers, the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA), densely innervate Area X and show singing-related changes in firing rate. In addition, dopamine levels in Area X change during singing. It is unknown, however, how song-related information could reach dopaminergic neurons. Here we report an anatomical pathway that could provide song-related information to the SNc and VTA. By using injections of bidirectionally transported fluorescent tracers in adult male zebra finches, we show that Area X and other song control nuclei do not project directly to the SNc or VTA. Instead, we describe an indirect pathway from Area X to midbrain dopaminergic neurons via a connection in the ventral pallidum (VP). Specifically, Area X projects to the VP via axon collaterals of Area X output neurons that also project to the thalamus. Dual injections revealed that the area of VP receiving input from Area X projects to the SNc and VTA. Furthermore, VP terminals in the SNc and VTA overlap with cells that project back to Area X. A portion of the arcopallium also projects to the SNc and VTA and could carry auditory information. These data demonstrate an anatomical loop through which Area X activity could influence its dopaminergic input.
Area X is a songbird basal ganglia nucleus that is required for vocal learning. Both Area X and its immediate surround, the medial striatum (MSt), contain cells displaying either striatal or pallidal characteristics. We used pathway-tracing techniques to compare directly the targets of Area X and MSt with those of the lateral striatum (LSt) and globus pallidus (GP). We found that the zebra finch LSt projects to the GP, substantia nigra pars reticulata (SNr) and pars compacta (SNc), but not the thalamus. The GP is reciprocally connected with the subthalamic nucleus (STN) and projects to the SNr and motor thalamus analog, the ventral intermediate area (VIA). In contrast to the LSt, Area X and surrounding MSt project to the ventral pallidum (VP) and dorsal thalamus via pallidal-like neurons. A dorsal strip of the MSt contains spiny neurons that project to the VP. The MSt, but not Area X, projects to the ventral tegmental area (VTA) and SNc, but neither MSt nor Area X projects to the SNr. Largely distinct populations of SNc and VTA dopaminergic neurons innervate Area X and surrounding the MSt. Finally, we provide evidence consistent with an indirect pathway from the cerebellum to the basal ganglia, including Area X. Area X projections thus differ from those of the GP and LSt, but are similar to those of the MSt. These data clarify the relationships among different portions of the oscine basal ganglia as well as among the basal ganglia of birds and mammals.
Fluorescence light microscopy allows multicolor visualization of cellular components with high specificity, but its utility has until recently been constrained by the intrinsic limit of spatial resolution. We applied three-dimensional structured illumination microscopy (3D-SIM) to circumvent this limit and to study the mammalian nucleus. By simultaneously imaging chromatin, nuclear lamina, and the nuclear pore complex (NPC), we observed several features that escape detection by conventional microscopy. We could resolve single NPCs that colocalized with channels in the lamin network and peripheral heterochromatin. We could differentially localize distinct NPC components and detect double-layered invaginations of the nuclear envelope in prophase as previously seen only by electron microscopy. Multicolor 3D-SIM opens new and facile possibilities to analyze subcellular structures beyond the diffraction limit of the emitted light.
In rodent hippocampus, neuronal activity is organized by a 6-10 Hz theta oscillation. The spike timing of hippocampal pyramidal cells with respect to the theta rhythm correlates with an animal’s position in space. This correlation has been suggested to indicate an explicit temporal code for position. Alternatively, it may be interpreted as a byproduct of theta-dependent dynamics of spatial information flow in hippocampus. Here we show that place cell activity on different phases of theta reflects positions shifted into the future or past along the animal’s trajectory in a two-dimensional environment. The phases encoding future and past positions are consistent across recorded CA1 place cells, indicating a coherent representation at the network level. Consistent theta-dependent time offsets are not simply a consequence of phase-position correlation (phase precession), because they are no longer seen after data randomization that preserves the phase-position relationship. The scale of these time offsets, 100-300 ms, is similar to the latencies of hippocampal activity after sensory input and before motor output, suggesting that offset activity may maintain coherent brain activity in the face of information processing delays.