Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
general_search_page-panel_pane_1 | views_panes

8 Publications

Showing 1-8 of 8 results
Your Criteria:
    12/22/10 | Cortical representations of olfactory input by trans-synaptic tracing.
    Miyamichi K, Amat F, Moussavi F, Wang C, Wickersham I, Wall NR, Taniguchi H, Tasic B, Huang ZJ, He Z, Callaway EM, Horowitz MA, Luo L
    Nature. 2010 Dec 22;472(7342):191-6. doi: 10.1038/nature09714

    In the mouse, each class of olfactory receptor neurons expressing a given odorant receptor has convergent axonal projections to two specific glomeruli in the olfactory bulb, thereby creating an odour map. However, it is unclear how this map is represented in the olfactory cortex. Here we combine rabies-virus-dependent retrograde mono-trans-synaptic labelling with genetics to control the location, number and type of ’starter’ cortical neurons, from which we trace their presynaptic neurons. We find that individual cortical neurons receive input from multiple mitral cells representing broadly distributed glomeruli. Different cortical areas represent the olfactory bulb input differently. For example, the cortical amygdala preferentially receives dorsal olfactory bulb input, whereas the piriform cortex samples the whole olfactory bulb without obvious bias. These differences probably reflect different functions of these cortical areas in mediating innate odour preference or associative memory. The trans-synaptic labelling method described here should be widely applicable to mapping connections throughout the mouse nervous system.

    View Publication Page
    12/21/10 | Cellular uptake of ribonuclease A relies on anionic glycans.
    Chao T, Lavis LD, Raines RT
    Biochemistry. 2010 Dec 21;49(50):10666-73. doi: 10.1021/bi1013485

    Bovine pancreatic ribonuclease (RNase A) can enter human cells, even though it lacks a cognate cell-surface receptor protein. Here, we report on the biochemical basis for its cellular uptake. Analyses in vitro and in cellulo revealed that RNase A interacts tightly with abundant cell-surface proteoglycans containing glycosaminoglycans, such as heparan sulfate and chondroitin sulfate, as well as with sialic acid-containing glycoproteins. The uptake of RNase A correlates with cell anionicity, as quantified by measuring electrophoretic mobility. The cellular binding and uptake of RNase A contrast with those of Onconase, an amphibian homologue that does not interact tightly with anionic cell-surface glycans. As anionic glycans are especially abundant on human tumor cells, our data predicate utility for mammalian ribonucleases as cancer chemotherapeutic agents.

    View Publication Page
    Looger Lab
    12/16/10 | Light-avoidance-mediating photoreceptors tile the Drosophila larval body wall.
    Xiang Y, Yuan Q, Vogt N, Looger LL, Jan LY, Jan YN
    Nature. 2010 Dec 16;468(7326):921-6. doi: 10.1038/nature09576

    Photoreceptors for visual perception, phototaxis or light avoidance are typically clustered in eyes or related structures such as the Bolwig organ of Drosophila larvae. Unexpectedly, we found that the class IV dendritic arborization neurons of Drosophila melanogaster larvae respond to ultraviolet, violet and blue light, and are major mediators of light avoidance, particularly at high intensities. These class IV dendritic arborization neurons, which are present in every body segment, have dendrites tiling the larval body wall nearly completely without redundancy. Dendritic illumination activates class IV dendritic arborization neurons. These novel photoreceptors use phototransduction machinery distinct from other photoreceptors in Drosophila and enable larvae to sense light exposure over their entire bodies and move out of danger.

    View Publication Page
    12/07/10 | Reconstructing embryonic development.
    Khairy K, Keller PJ
    Genesis. 2010 Dec 7;49(7):488-513. doi: 10.1002/dvg.20698

    Novel approaches to bio-imaging and automated computational image processing allow the design of truly quantitative studies in developmental biology. Cell behavior, cell fate decisions, cell interactions during tissue morphogenesis, and gene expression dynamics can be analyzed in vivo for entire complex organisms and throughout embryonic development. We review state-of-the-art technology for live imaging, focusing on fluorescence light microscopy techniques for system-level investigations of animal development and discuss computational approaches to image segmentation, cell tracking, automated data annotation, and biophysical modeling. We argue that the substantial increase in data complexity and size requires sophisticated new strategies to data analysis to exploit the enormous potential of these new resources.

    View Publication Page
    Looger Lab
    12/02/10 | A dimorphic pheromone circuit in Drosophila from sensory input to descending output.
    Ruta V, Datta SR, Vasconcelos ML, Freeland J, Looger LL, Axel R
    Nature. 2010 Dec 2;468(7324):686-90. doi: 10.1038/nature09554

    Drosophila show innate olfactory-driven behaviours that are observed in naive animals without previous learning or experience, suggesting that the neural circuits that mediate these behaviours are genetically programmed. Despite the numerical simplicity of the fly nervous system, features of the anatomical organization of the fly brain often confound the delineation of these circuits. Here we identify a neural circuit responsive to cVA, a pheromone that elicits sexually dimorphic behaviours. We have combined neural tracing using an improved photoactivatable green fluorescent protein (PA-GFP) with electrophysiology, optical imaging and laser-mediated microlesioning to map this circuit from the activation of sensory neurons in the antennae to the excitation of descending neurons in the ventral nerve cord. This circuit is concise and minimally comprises four neurons, connected by three synapses. Three of these neurons are overtly dimorphic and identify a male-specific neuropil that integrates inputs from multiple sensory systems and sends outputs to the ventral nerve cord. This neural pathway suggests a means by which a single pheromone can elicit different behaviours in the two sexes.

    View Publication Page
    12/01/10 | Determining membrane protein topologies in single cells and high-throughput screening applications.
    Wunder C, Lippincott-Schwartz J, Lorenz H
    Current protocols in cell biology / editorial board, Juan S. Bonifacino ... [et al.]. 2010 Dec;Chapter 5:Unit 5.7. doi: 10.1002/0471143030.cb0507s49

    Correct localization and topology are crucial for a protein's cellular function. To determine topologies of membrane proteins, a new technique, called fluorescence protease protection (FPP) assay, has recently been established. The sole requirements for FPP are the expression of fluorescent-protein fusion proteins and the selective permeabilization of the plasma membrane, permitting a wide range of cell types and organelles to be investigated. Proteins topologies in organelles like endoplasmic reticulum, Golgi apparatus, mitochondria, peroxisomes, and autophagosomes have already been determined by FPP. Here, two different step-by-step protocols of the FPP assay are provided. First, we describe the FPP assay using fluorescence microscopy for single adherent cells, and second, we outline the FPP assay for high-throughput screening applications.

    View Publication Page
    Grigorieff Lab
    12/01/10 | GPU-enabled FREALIGN: accelerating single particle 3D reconstruction and refinement in Fourier space on graphics processors.
    Li X, Grigorieff N, Cheng Y
    Journal of Structural Biology. 2010 Dec;172(3):407-12. doi: 10.1016/j.jsb.2010.06.010

    Among all the factors that determine the resolution of a 3D reconstruction by single particle electron cryo-microscopy (cryoEM), the number of particle images used in the dataset plays a major role. More images generally yield better resolution, assuming the imaged protein complex is conformationally and compositionally homogeneous. To facilitate processing of very large datasets, we modified the computer program, FREALIGN, to execute the computationally most intensive procedures on Graphics Processing Units (GPUs). Using the modified program, the execution speed increased between 10 and 240-fold depending on the task performed by FREALIGN. Here we report the steps necessary to parallelize critical FREALIGN subroutines and evaluate its performance on computers with multiple GPUs.

    View Publication Page
    12/01/10 | Nodavirus-induced membrane rearrangement in replication complex assembly requires replicase protein a, RNA templates, and polymerase activity.
    Kopek BG, Settles EW, Friesen PD, Ahlquist P
    Journal of Virology. 2010 Dec;84(24):12492-503. doi: 10.1128/JVI.01495-10

    Positive-strand RNA [(+)RNA] viruses invariably replicate their RNA genomes on modified intracellular membranes. In infected Drosophila cells, Flock House nodavirus (FHV) RNA replication complexes form on outer mitochondrial membranes inside \~{}50-nm, virus-induced spherular invaginations similar to RNA replication-linked spherules induced by many (+)RNA viruses at various membranes. To better understand replication complex assembly, we studied the mechanisms of FHV spherule formation. FHV has two genomic RNAs; RNA1 encodes multifunctional RNA replication protein A and RNA interference suppressor protein B2, while RNA2 encodes the capsid proteins. Expressing genomic RNA1 without RNA2 induced mitochondrial spherules indistinguishable from those in FHV infection. RNA1 mutation showed that protein B2 was dispensable and that protein A was the only FHV protein required for spherule formation. However, expressing protein A alone only "zippered" together the surfaces of adjacent mitochondria, without inducing spherules. Thus, protein A is necessary but not sufficient for spherule formation. Coexpressing protein A plus a replication-competent FHV RNA template induced RNA replication in trans and membrane spherules. Moreover, spherules were not formed when replicatable FHV RNA templates were expressed with protein A bearing a single, polymerase-inactivating amino acid change or when wild-type protein A was expressed with a nonreplicatable FHV RNA template. Thus, unlike many (+)RNA viruses, the membrane-bounded compartments in which FHV RNA replication occurs are not induced solely by viral protein(s) but require viral RNA synthesis. In addition to replication complex assembly, the results have implications for nodavirus interaction with cell RNA silencing pathways and other aspects of virus control.

    View Publication Page