Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
general_search_page-panel_pane_1 | views_panes

16 Publications

Showing 1-10 of 16 results
Your Criteria:
    02/23/11 | Bone marrow homing and engraftment of human hematopoietic stem and progenitor cells is mediated by a polarized membrane domain.
    Larochelle A, Gillette JM, Desmond R, Ichwan B, Cantilena A, Cerf A, Barrett AJ, Wayne AS, Lippincott-Schwartz J, Dunbar CE
    Blood. 2012 Feb 23;119(8):1848-55. doi: 10.1182/blood-2011-08-371583

    Manipulation of hematopoietic stem/progenitor cells (HSPCs) ex vivo is of clinical importance for stem cell expansion and gene therapy applications. However, most cultured HSPCs are actively cycling, and show a homing and engraftment defect compared with the predominantly quiescent noncultured HSPCs. We previously showed that HSPCs make contact with osteoblasts in vitro via a polarized membrane domain enriched in adhesion molecules such as tetraspanins. Here we show that increased cell cycling during ex vivo culture of HSPCs resulted in disruption of this membrane domain, as evidenced by disruption of polarity of the tetraspanin CD82. Chemical disruption or antibody-mediated blocking of CD82 on noncultured HSPCs resulted in decreased stromal cell adhesion, homing, and engraftment in nonobese diabetic/severe combined immunodeficiency IL-2γ(null) (NSG) mice compared with HSPCs with an intact domain. Most leukemic blasts were actively cycling and correspondingly displayed a loss of domain polarity and decreased homing in NSG mice compared with normal HSPCs. We conclude that quiescent cells, unlike actively cycling cells, display a polarized membrane domain enriched in tetraspanins that mediates homing and engraftment, providing a mechanistic explanation for the homing/engraftment defect of cycling cells and a potential new therapeutic target to enhance engraftment.

    View Publication Page
    Pastalkova Lab
    02/23/11 | Cell assembly sequences arising from spike threshold adaptation keep track of time in the hippocampus.
    Itskov V, Curto C, Pastalkova E, Buzsáki G
    The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 2011 Feb 23;31(8):2828-34. doi: 10.1523/JNEUROSCI.3773-10.2011

    Hippocampal neurons can display reliable and long-lasting sequences of transient firing patterns, even in the absence of changing external stimuli. We suggest that time-keeping is an important function of these sequences, and propose a network mechanism for their generation. We show that sequences of neuronal assemblies recorded from rat hippocampal CA1 pyramidal cells can reliably predict elapsed time (15-20 s) during wheel running with a precision of 0.5 s. In addition, we demonstrate the generation of multiple reliable, long-lasting sequences in a recurrent network model. These sequences are generated in the presence of noisy, unstructured inputs to the network, mimicking stationary sensory input. Identical initial conditions generate similar sequences, whereas different initial conditions give rise to distinct sequences. The key ingredients responsible for sequence generation in the model are threshold-adaptation and a Mexican-hat-like pattern of connectivity among pyramidal cells. This pattern may arise from recurrent systems such as the hippocampal CA3 region or the entorhinal cortex. We hypothesize that mechanisms that evolved for spatial navigation also support tracking of elapsed time in behaviorally relevant contexts.

    View Publication Page
    Looger LabLeonardo Lab
    02/23/11 | Imaging light responses of targeted neuron populations in the rodent retina.
    Borghuis BG, Tian L, Xu Y, Nikonov SS, Vardi N, Zemelman BV, Looger LL
    The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 2011 Feb 23;31:2855-67. doi: 10.1523/JNEUROSCI.6064-10.2011

    Decoding the wiring diagram of the retina requires simultaneous observation of activity in identified neuron populations. Available recording methods are limited in their scope: electrodes can access only a small fraction of neurons at once, whereas synthetic fluorescent indicator dyes label tissue indiscriminately. Here, we describe a method for studying retinal circuitry at cellular and subcellular levels combining two-photon microscopy and a genetically encoded calcium indicator. Using specific viral and promoter constructs to drive expression of GCaMP3, we labeled all five major neuron classes in the adult mouse retina. Stimulus-evoked GCaMP3 responses as imaged by two-photon microscopy permitted functional cell type annotation. Fluorescence responses were similar to those measured with the small molecule dye OGB-1. Fluorescence intensity correlated linearly with spike rates >10 spikes/s, and a significant change in fluorescence always reflected a significant change in spike firing rate. GCaMP3 expression had no apparent effect on neuronal function. Imaging at subcellular resolution showed compartment-specific calcium dynamics in multiple identified cell types.

    View Publication Page
    Zuker Lab
    02/18/11 | The coding of temperature in the Drosophila brain.
    Gallio M, Ofstad TA, Macpherson LJ, Wang JW, Zuker CS
    Cell. 2011 Feb 18;144(4):614-24. doi: 10.1016/j.cell.2011.01.028

    Thermosensation is an indispensable sensory modality. Here, we study temperature coding in Drosophila, and show that temperature is represented by a spatial map of activity in the brain. First, we identify TRP channels that function in the fly antenna to mediate the detection of cold stimuli. Next, we identify the hot-sensing neurons and show that hot and cold antennal receptors project onto distinct, but adjacent glomeruli in the Proximal-Antennal-Protocerebrum (PAP) forming a thermotopic map in the brain. We use two-photon imaging to reveal the functional segregation of hot and cold responses in the PAP, and show that silencing the hot- or cold-sensing neurons produces animals with distinct and discrete deficits in their behavioral responses to thermal stimuli. Together, these results demonstrate that dedicated populations of cells orchestrate behavioral responses to different temperature stimuli, and reveal a labeled-line logic for the coding of temperature information in the brain.

    View Publication Page
    Pavlopoulos Lab
    02/15/11 | Hox gene Ultrabithorax regulates distinct sets of target genes at successive stages of Drosophila haltere morphogenesis.
    Pavlopoulos A, Akam M
    Proceedings of the National Academy of Sciences of the United States of America. 2011 Feb 15;108:2855-60. doi: 10.1073/pnas.1015077108

    Hox genes encode highly conserved transcription factors that regionalize the animal body axis by controlling complex developmental processes. Although they are known to operate in multiple cell types and at different stages, we are still missing the batteries of genes targeted by any one Hox gene over the course of a single developmental process to achieve a particular cell and organ morphology. The transformation of wings into halteres by the Hox gene Ultrabithorax (Ubx) in Drosophila melanogaster presents an excellent model system to study the Hox control of transcriptional networks during successive stages of appendage morphogenesis and cell differentiation. We have used an inducible misexpression system to switch on Ubx in the wing epithelium at successive stages during metamorphosis–in the larva, prepupa, and pupa. We have then used extensive microarray expression profiling and quantitative RT-PCR to identify the primary transcriptional responses to Ubx. We find that Ubx targets range from regulatory genes like transcription factors and signaling components to terminal differentiation genes affecting a broad repertoire of cell behaviors and metabolic reactions. Ubx up- and down-regulates hundreds of downstream genes at each stage, mostly in a subtle manner. Strikingly, our analysis reveals that Ubx target genes are largely distinct at different stages of appendage morphogenesis, suggesting extensive interactions between Hox genes and hormone-controlled regulatory networks to orchestrate complex genetic programs during metamorphosis.

    View Publication Page
    02/15/11 | Principles and current strategies for targeting autophagy for cancer treatment.
    Amaravadi RK, Lippincott-Schwartz J, Yin X, Weiss WA, Takebe N, Timmer W, DiPaola RS, Lotze MT, White E
    Clinical cancer research : an official journal of the American Association for Cancer Research. 2011 Feb 15;17(4):654-66. doi: 10.1158/1078-0432.CCR-10-2634

    Autophagy is an evolutionarily conserved, intracellular self-defense mechanism in which organelles and proteins are sequestered into autophagic vesicles that are subsequently degraded through fusion with lysosomes. Cells, thereby, prevent the toxic accumulation of damaged or unnecessary components, but also recycle these components to sustain metabolic homoeostasis. Heightened autophagy is a mechanism of resistance for cancer cells faced with metabolic and therapeutic stress, revealing opportunities for exploitation as a therapeutic target in cancer. We summarize recent developments in the field of autophagy and cancer and build upon the results presented at the Cancer Therapy Evaluation Program (CTEP) Early Drug Development meeting in March 2010. Herein, we describe our current understanding of the core components of the autophagy machinery and the functional relevance of autophagy within the tumor microenvironment, and we outline how this knowledge has informed preclinical investigations combining the autophagy inhibitor hydroxychloroquine (HCQ) with chemotherapy, targeted therapy, and immunotherapy. Finally, we describe ongoing clinical trials involving HCQ as a first generation autophagy inhibitor, as well as strategies for the development of novel, more potent, and specific inhibitors of autophagy.

    View Publication Page
    Cui Lab

    A large number of degrees of freedom are required to produce a high quality focus through random scattering media. Previous demonstrations based on spatial phase modulations suffer from either a slow speed or a small number of degrees of freedom. In this work, a high speed wavefront determination technique based on spatial frequency domain wavefront modulations is proposed and experimentally demonstrated, which is capable of providing both a high operation speed and a large number of degrees of freedom. The technique was employed to focus light through a strongly scattering medium and the entire wavefront was determined in 400 milliseconds,  three orders of magnitude faster than the previous report.

    View Publication Page
    Sternson Lab
    02/14/11 | Adeno-associated viral vectors for mapping, monitoring, and manipulating neural circuits.
    Sternson S, Betley JN
    Human Gene Therapy. 2011 Feb 14;22(6):669-77. doi: 10.1089/hum.2010.204

    Understanding the structure and function of neural circuits are central questions in neuroscience research. To address these questions, new genetically encoded tools have been developed for mapping, monitoring, and manipulating neurons. Essential to implementation of these tools is their selective delivery to defined neuronal populations in the brain. This has been facilitated by recent improvements in cell type-specific transgene expression using recombinant adeno-associated viral vectors. Here, we highlight these developments and discuss areas for improvement that could further expand capabilities for neural circuit analysis.

    View Publication Page
    02/10/11 | Neuronal control of Drosophila courtship song.
    von Philipsborn AC, Liu T, Yu JY, Masser C, Bidaye SS, Dickson BJ
    Neuron. 2011 Feb 10;69:509-22. doi: 10.1016/j.neuron.2011.01.011

    The courtship song of the Drosophila male serves as a genetically tractable model for the investigation of the neural mechanisms of decision-making, action selection, and motor pattern generation. Singing has been causally linked to the activity of the set of neurons that express the sex-specific fru transcripts, but the specific neurons involved have not been identified. Here we identify five distinct classes of fru neuron that trigger or compose the song. Our data suggest that P1 and pIP10 neurons in the brain mediate the decision to sing, and to act upon this decision, while the thoracic neurons dPR1, vPR6, and vMS11 are components of a central pattern generator that times and shapes the song’s pulses. These neurons are potentially connected in a functional circuit, with the descending pIP10 neuron linking the brain and thoracic song centers. Sexual dimorphisms in each of these neurons may explain why only males sing.

    View Publication Page
    02/08/11 | Observers exploit stochastic models of sensory change to help judge the passage of time.
    Ahrens MB, Sahani M
    Current Biology. 2011 Feb 8;21(3):200-6. doi: 10.1016/j.cub.2010.12.043

    Sensory stimulation can systematically bias the perceived passage of time, but why and how this happens is mysterious. In this report, we provide evidence that such biases may ultimately derive from an innate and adaptive use of stochastically evolving dynamic stimuli to help refine estimates derived from internal timekeeping mechanisms. A simplified statistical model based on probabilistic expectations of stimulus change derived from the second-order temporal statistics of the natural environment makes three predictions. First, random noise-like stimuli whose statistics violate natural expectations should induce timing bias. Second, a previously unexplored obverse of this effect is that similar noise stimuli with natural statistics should reduce the variability of timing estimates. Finally, this reduction in variability should scale with the interval being timed, so as to preserve the overall Weber law of interval timing. All three predictions are borne out experimentally. Thus, in the context of our novel theoretical framework, these results suggest that observers routinely rely on sensory input to augment their sense of the passage of time, through a process of Bayesian inference based on expectations of change in the natural environment.

    View Publication Page