Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
general_search_page-panel_pane_1 | views_panes

9 Publications

Showing 1-9 of 9 results
Your Criteria:
    07/27/12 | Neuroscience. The mind of a male?
    Chklovskii DB, Bargmann CI
    Science. 2012 Jul 27;337:416-7. doi: 10.1126/science.1225853
    07/26/12 | An olfactory subsystem that mediates high-sensitivity detection of volatile amines.
    Pacifico R, Dewan A, Cawley D, Guo C, Bozza T
    Cell Rep. 2012 Jul 26;2(1):76-88. doi: 10.1016/j.celrep.2012.06.006

    Olfactory stimuli are detected by over 1,000 odorant receptors in mice, with each receptor being mapped to specific glomeruli in the olfactory bulb. The trace amine-associated receptors (TAARs) are a small family of evolutionarily conserved olfactory receptors whose contribution to olfaction remains enigmatic. Here, we show that a majority of the TAARs are mapped to a discrete subset of glomeruli in the dorsal olfactory bulb of the mouse. This TAAR projection is distinct from the previously described class I and class II domains, and is formed by a sensory neuron population that is restricted to express TAAR genes prior to choice. We also show that the dorsal TAAR glomeruli are selectively activated by amines at low concentrations. Our data uncover a hard-wired, parallel input stream in the main olfactory pathway that is specialized for the detection of volatile amines.

    View Publication Page
    07/12/12 | Estimation theoretic measure of resolution for stochastic localization microscopy.
    Fitzgerald JE, Lu J, Schnitzer MJ
    Physical review letters. 2012 Jul 27;109(4):048102. doi: 10.1103/PhysRevLett.109.048102

    One approach to super-resolution fluorescence microscopy, termed stochastic localization microscopy, relies on the nanometer scale spatial localization of individual fluorescent emitters that stochastically label specific features of the specimen. The precision of emitter localization is an important determinant of the resulting image resolution but is insufficient to specify how well the derived images capture the structure of the specimen. We address this deficiency by considering the inference of specimen structure based on the estimated emitter locations. By using estimation theory, we develop a measure of spatial resolution that jointly depends on the density of the emitter labels, the precision of emitter localization, and prior information regarding the spatial frequency content of the labeled object. The Nyquist criterion does not set the scaling of this measure with emitter number. Given prior information and a fixed emitter labeling density, our resolution measure asymptotes to a finite value as the precision of emitter localization improves. By considering the present experimental capabilities, this asymptotic behavior implies that further resolution improvements require increases in labeling density above typical current values. Our treatment also yields algorithms to enhance reliable image features. Overall, our formalism facilitates the rigorous statistical interpretation of the data produced by stochastic localization imaging techniques.

    View Publication Page
    Svoboda Lab
    07/01/12 | Automated tracking of whiskers in videos of head fixed rodents.
    Clack NG, O’Connor DH, Huber D, Petreanu L, Hires A, Peron S, Svoboda K, Myers EW
    PLoS Computational Biology. 2012 Jul;8:e1002591. doi: 10.1371/journal.pcbi.1002591

    We have developed software for fully automated tracking of vibrissae (whiskers) in high-speed videos (>500 Hz) of head-fixed, behaving rodents trimmed to a single row of whiskers. Performance was assessed against a manually curated dataset consisting of 1.32 million video frames comprising 4.5 million whisker traces. The current implementation detects whiskers with a recall of 99.998% and identifies individual whiskers with 99.997% accuracy. The average processing rate for these images was 8 Mpx/s/cpu (2.6 GHz Intel Core2, 2 GB RAM). This translates to 35 processed frames per second for a 640 px×352 px video of 4 whiskers. The speed and accuracy achieved enables quantitative behavioral studies where the analysis of millions of video frames is required. We used the software to analyze the evolving whisking strategies as mice learned a whisker-based detection task over the course of 6 days (8148 trials, 25 million frames) and measure the forces at the sensory follicle that most underlie haptic perception.

    View Publication Page
    Cardona Lab
    07/01/12 | Current challenges in open-source bioimage informatics.
    Cardona A, Tomancak P
    Nature Methods. 2012 Jul;9(7):661-5. doi: 10.1038/nmeth.2082

    We discuss the advantages and challenges of the open-source strategy in biological image analysis and argue that its full impact will not be realized without better support and recognition of software engineers’ contributions to the biological sciences and more support of this development model from funders and institutions.

    View Publication Page
    07/01/12 | Dorsorostral snout muscles in the rat subserve coordinated movement for whisking and sniffing.
    Haidarliu S, Golomb D, Kleinfeld D, Ahissar E
    Anatomical Record. 2012 Jul;295(7):1181-91. doi: 10.1002/ar.22501

    Histochemical examination of the dorsorostral quadrant of the rat snout revealed superficial and deep muscles that are involved in whisking, sniffing, and airflow control. The part of M. nasolabialis profundus that acts as an intrinsic (follicular) muscle to facilitate protraction and translation of the vibrissae is described. An intraturbinate and selected rostral-most nasal muscles that can influence major routs of inspiratory airflow and rhinarial touch through their control of nostril configuration, atrioturbinate and rhinarium position, were revealed.

    View Publication Page
    Cardona LabSaalfeld LabFetter Lab
    07/01/12 | Elastic volume reconstruction from series of ultra-thin microscopy sections.
    Saalfeld S, Fetter RD, Cardona A, Tomancak P
    Nature Methods. 2012 Jul;9(7):717-20. doi: 10.1038/nmeth.2072

    Anatomy of large biological specimens is often reconstructed from serially sectioned volumes imaged by high-resolution microscopy. We developed a method to reassemble a continuous volume from such large section series that explicitly minimizes artificial deformation by applying a global elastic constraint. We demonstrate our method on a series of transmission electron microscopy sections covering the entire 558-cell Caenorhabditis elegans embryo and a segment of the Drosophila melanogaster larval ventral nerve cord.

    View Publication Page
    Cardona LabSaalfeld Lab
    07/01/12 | Fiji: an open-source platform for biological-image analysis.
    Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A
    Nature Methods. 2012 Jul;9(7):676-82. doi: 10.1038/nmeth.2019

    Fiji is a distribution of the popular open-source software ImageJ focused on biological-image analysis. Fiji uses modern software engineering practices to combine powerful software libraries with a broad range of scripting languages to enable rapid prototyping of image-processing algorithms. Fiji facilitates the transformation of new algorithms into ImageJ plugins that can be shared with end users through an integrated update system. We propose Fiji as a platform for productive collaboration between computer science and biology research communities.

    View Publication Page
    07/01/12 | Organization and metamorphosis of glia in the Drosophila visual system.
    Edwards TN, Nuschke AC, Nern A, Meinertzhagen IA
    The Journal of Comparative Neurology. 2012 Jul 1;520(10):2067-85. doi: 10.1002/cne.23071

    The visual system of Drosophila is an excellent model for determining the interactions that direct the differentiation of the nervous system’s many unique cell types. Glia are essential not only in the development of the nervous system, but also in the function of those neurons with which they become associated in the adult. Given their role in visual system development and adult function we need to both accurately and reliably identify the different subtypes of glia, and to relate the glial subtypes in the larval brain to those previously described for the adult. We viewed driver expression in subsets of larval eye disc glia through the earliest stages of pupal development to reveal the counterparts of these cells in the adult. Two populations of glia exist in the lamina, the first neuropil of the adult optic lobe: those that arise from precursors in the eye-disc/optic stalk and those that arise from precursors in the brain. In both cases, a single larval source gives rise to at least three different types of adult glia. Furthermore, analysis of glial cell types in the second neuropil, the medulla, has identified at least four types of astrocyte-like (reticular) glia. Our clarification of the lamina’s adult glia and identification of their larval origins, particularly the respective eye disc and larval brain contributions, begin to define developmental interactions which establish the different subtypes of glia.

    View Publication Page