Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

236 Publications

Showing 1-10 of 236 results
Your Criteria:
    12/30/14 | Light-sheet imaging for systems neuroscience.
    Keller PJ, Ahrens MB, Freeman J
    Nature Methods. 2014 Dec 30;12(1):27-9. doi: 10.1038/nmeth.3214

    Developments in electrical and optical recording technology are scaling up the size of neuronal populations that can be monitored simultaneously. Light-sheet imaging is rapidly gaining traction as a method for optically interrogating activity in large networks and presents both opportunities and challenges for understanding circuit function.

    View Publication Page
    12/28/14 | Neural computation for rehabilitation.
    Hu X, Wang Y, Zhao T, Gunduz A
    Biomed Research International. 2014;2014:603985. doi: 10.1155/2014/603985
    12/24/14 | 3D imaging of Sox2 enhancer clusters in embryonic stem cells.
    Liu Z, Legant WR, Chen B, Li L, Grimm JB, Lavis LD, Betzig E, Tjian R
    eLife. 2014 Dec 24;3:. doi: 10.7554/eLife.04236

    Combinatorial cis-regulatory networks encoded in animal genomes represent the foundational gene expression mechanism for directing cell-fate commitment and maintenance of cell identity by transcription factors (TFs). However, the 3D spatial organization of cis-elements and how such sub-nuclear structures influence TF activity remain poorly understood. Here, we combine lattice light-sheet imaging, single-molecule tracking, numerical simulations, and ChIP-exo mapping to localize and functionally probe Sox2 enhancer-organization in living embryonic stem cells. Sox2 enhancers form 3D-clusters that are segregated from heterochromatin but overlap with a subset of Pol II enriched regions. Sox2 searches for specific binding targets via a 3D-diffusion dominant mode when shuttling long-distances between clusters while chromatin-bound states predominate within individual clusters. Thus, enhancer clustering may reduce global search efficiency but enables rapid local fine-tuning of TF search parameters. Our results suggest an integrated model linking cis-element 3D spatial distribution to local-versus-global target search modalities essential for regulating eukaryotic gene transcription.

    View Publication Page
    12/23/14 | Assembling cell ensembles.
    Spruston N
    Cell. 2014 Jun 19;157(7):1502-4. doi: 10.1016/j.cell.2014.05.032

    The way the hippocampus processes information and encodes memories in the form of "cell assemblies" is likely determined in part by how its circuits are wired up during development. In this issue, Xu et al. now provide new insight into how neurons arising from a single common precursor migrate to their final destination and form functionally synchronous ensembles.

    View Publication Page
    12/23/14 | Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila.
    Aso Y, Sitaraman D, Ichinose T, Kaun KR, Vogt K, Belliart-Guérin G, Placais P, Robie AA, Yamagata N, Schnaitmann C, Rowell WJ, Johnston RM, Ngo TB, Chen N, Korff W, Nitabach MN, Heberlein U, Preat T, Branson KM, Tanimoto H, Rubin GM
    eLife. 12/2014;4:. doi: 10.7554/eLife.04580

    Animals discriminate stimuli, learn their predictive value and use this knowledge to modify their behavior. In Drosophila, the mushroom body (MB) plays a key role in these processes. Sensory stimuli are sparsely represented by ∼2000 Kenyon cells, which converge onto 34 output neurons (MBONs) of 21 types. We studied the role of MBONs in several associative learning tasks and in sleep regulation, revealing the extent to which information flow is segregated into distinct channels and suggesting possible roles for the multi-layered MBON network. We also show that optogenetic activation of MBONs can, depending on cell type, induce repulsion or attraction in flies. The behavioral effects of MBON perturbation are combinatorial, suggesting that the MBON ensemble collectively represents valence. We propose that local, stimulus-specific dopaminergic modulation selectively alters the balance within the MBON network for those stimuli. Our results suggest that valence encoded by the MBON ensemble biases memory-based action selection.

    View Publication Page
    12/23/14 | Regulation of RNA granule dynamics by phosphorylation of serine-rich, intrinsically disordered proteins in C. elegans.
    Wang JT, Smith J, Chen B, Schmidt H, Rasoloson D, Paix A, Lambrus BG, Calidas D, Betzig E, Seydoux G
    eLife. 2014 Dec 23;4:. doi: 10.7554/eLife.04591

    RNA granules have been likened to liquid droplets whose dynamics depend on the controlled dissolution and condensation of internal components. The molecules and reactions that drive these dynamics in vivo are not well understood. In this study, we present evidence that a group of intrinsically disordered, serine-rich proteins regulate the dynamics of P granules in C. elegans embryos. The MEG (maternal-effect germline defective) proteins are germ plasm components that are required redundantly for fertility. We demonstrate that MEG-1 and MEG-3 are substrates of the kinase MBK-2/DYRK and the phosphatase PP2A(PPTR-½). Phosphorylation of the MEGs promotes granule disassembly and dephosphorylation promotes granule assembly. Using lattice light sheet microscopy on live embryos, we show that GFP-tagged MEG-3 localizes to a dynamic domain that surrounds and penetrates each granule. We conclude that, despite their liquid-like behavior, P granules are non-homogeneous structures whose assembly in embryos is regulated by phosphorylation.

    View Publication Page
    12/23/14 | The neuronal architecture of the mushroom body provides a logic for associative learning.
    Aso Y, Hattori D, Yu Y, Johnston RM, Iyer NA, Ngo T, Dionne H, Abbott L, Axel R, Tanimoto H, Rubin GM
    eLife. 2014 Dec 23;3:. doi: 10.7554/eLife.04577

    We identified the neurons comprising the Drosophila mushroom body (MB), an associative center in invertebrate brains, and provide a comprehensive map describing their potential connections. Each of the 21 MB output neuron (MBON) types elaborates segregated dendritic arbors along the parallel axons of ∼2000 Kenyon cells, forming 15 compartments that collectively tile the MB lobes. MBON axons project to five discrete neuropils outside of the MB and three MBON types form a feedforward network in the lobes. Each of the 20 dopaminergic neuron (DAN) types projects axons to one, or at most two, of the MBON compartments. Convergence of DAN axons on compartmentalized Kenyon cell-MBON synapses creates a highly ordered unit that can support learning to impose valence on sensory representations. The elucidation of the complement of neurons of the MB provides a comprehensive anatomical substrate from which one can infer a functional logic of associative olfactory learning and memory.

    View Publication Page
    Cui Lab
    12/22/14 | In vivo fluorescence microscopy via iterative multi-photon adaptive compensation technique.
    Kong L, Cui M
    Optical Express. 2014 Oct 6;22(20):23786-94. doi: 10.1364/OE.22.023786

    Iterative multi-photon adaptive compensation technique (IMPACT) has been developed for wavefront measurement and compensation in highly scattering tissues. Our previous report was largely based on the measurements of fixed tissue. Here we demonstrate the advantages of IMPACT for in vivo imaging and report the latest results. In particular, we show that IMPACT can be used for functional imaging of awake mice, and greatly improve the in vivo neuron imaging in mouse cortex at large depth (~660 microns). Moreover, IMPACT enables neuron imaging through the intact skull of adult mice, which promises noninvasive optical measurements in mouse brain.

    View Publication Page
    12/22/14 | Isolation of mitochondria from animal tissue.
    Clayton DA, Shadel GS
    Cold Spring Harbor Protocols. 2014 Oct;2014(10):pdb.prot080010. doi: 10.1101/pdb.prot080010

    Rat or mouse liver is the most frequently used tissue for mitochondrial preparations because it is readily available, easy to homogenize, and replete with mitochondria. A motor-driven Teflon and glass Potter-Elvehjem homogenizer is the best choice for homogenizing liver, but if one is not available, this tissue is soft enough that a Dounce homogenizer with a loose (A) pestle can also be used. The yield and purity of the mitochondrial preparation will be influenced by the method and speed of preparation and the age and physiological condition of the animal.

    View Publication Page
    12/22/14 | Isolation of mitochondria from tissue culture cells.
    Clayton DA, Shadel GS
    Cold Spring Harbor Protocols. 2014 Oct;2014(10):pdb.prot080002. doi: 10.1101/pdb.prot080002

    The number of mitochondria per cell varies substantially from cell line to cell line. For example, human HeLa cells contain at least twice as many mitochondria as smaller mouse L cells. This protocol starts with a washed cell pellet of 1-2 mL derived from ∼10⁹ cells grown in culture. The cells are swollen in a hypotonic buffer and ruptured with a Dounce or Potter-Elvehjem homogenizer using a tight-fitting pestle, and mitochondria are isolated by differential centrifugation.

    View Publication Page