Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

1 Publications

Showing 1-1 of 1 results
Your Criteria:
    01/25/21 | Idiosyncratic learning performance in flies generalizes across modalities.
    Matthew Smith , Kyle S. Honegger , Glenn Turner , Benjamin de Bivort
    bioRxiv. 2021 Jan 25:

    Individuals vary in their innate behaviors, even when they have the same genome and have been reared in the same environment. The extent of individuality in plastic behaviors, like learning, is less well characterized. Also unknown is the extent to which intragenotypic differences in learning generalize: if an individual performs well in one assay, will it perform well in other assays? We investigated this using the fruit fly Drosophila melanogaster, an organism long-used to study the mechanistic basis of learning and memory. We found that isogenic flies, reared in identical lab conditions, and subject to classical conditioning that associated odorants with electric shock, exhibit clear individuality in their learning responses. Flies that performed well when an odor was paired with shock tended to perform well when other odors were paired with shock, or when the original odor was paired with bitter taste. Thus, individuality in learning performance appears to be prominent in isogenic animals reared identically, and individual differences in learning performance generalize across stimulus modalities. Establishing these results in flies opens up the possibility of studying the genetic and neural circuit basis of individual differences in learning in a highly suitable model organism.

    View Publication Page