Filter
Associated Lab
- 43418 (1) Apply 43418 filter
- 43430 (2) Apply 43430 filter
- Ahrens Lab (5) Apply Ahrens Lab filter
- Aso Lab (2) Apply Aso Lab filter
- Betzig Lab (3) Apply Betzig Lab filter
- Beyene Lab (1) Apply Beyene Lab filter
- Card Lab (3) Apply Card Lab filter
- Clapham Lab (1) Apply Clapham Lab filter
- Darshan Lab (4) Apply Darshan Lab filter
- Dickson Lab (2) Apply Dickson Lab filter
- Dudman Lab (3) Apply Dudman Lab filter
- Espinosa Medina Lab (7) Apply Espinosa Medina Lab filter
- Feliciano Lab (1) Apply Feliciano Lab filter
- Fitzgerald Lab (4) Apply Fitzgerald Lab filter
- Funke Lab (5) Apply Funke Lab filter
- Harris Lab (1) Apply Harris Lab filter
- Hermundstad Lab (6) Apply Hermundstad Lab filter
- Hess Lab (7) Apply Hess Lab filter
- Jayaraman Lab (3) Apply Jayaraman Lab filter
- Karpova Lab (1) Apply Karpova Lab filter
- Keleman Lab (1) Apply Keleman Lab filter
- Keller Lab (1) Apply Keller Lab filter
- Lavis Lab (13) Apply Lavis Lab filter
- Lee (Albert) Lab (1) Apply Lee (Albert) Lab filter
- Leonardo Lab (1) Apply Leonardo Lab filter
- Li Lab (5) Apply Li Lab filter
- Lippincott-Schwartz Lab (7) Apply Lippincott-Schwartz Lab filter
- Liu (Yin) Lab (5) Apply Liu (Yin) Lab filter
- Liu (Zhe) Lab (5) Apply Liu (Zhe) Lab filter
- Looger Lab (8) Apply Looger Lab filter
- O'Shea Lab (1) Apply O'Shea Lab filter
- Pachitariu Lab (5) Apply Pachitariu Lab filter
- Pedram Lab (1) Apply Pedram Lab filter
- Podgorski Lab (2) Apply Podgorski Lab filter
- Reiser Lab (4) Apply Reiser Lab filter
- Romani Lab (3) Apply Romani Lab filter
- Rubin Lab (1) Apply Rubin Lab filter
- Saalfeld Lab (6) Apply Saalfeld Lab filter
- Scheffer Lab (1) Apply Scheffer Lab filter
- Schreiter Lab (1) Apply Schreiter Lab filter
- Sgro Lab (3) Apply Sgro Lab filter
- Singer Lab (1) Apply Singer Lab filter
- Spruston Lab (2) Apply Spruston Lab filter
- Stern Lab (8) Apply Stern Lab filter
- Sternson Lab (3) Apply Sternson Lab filter
- Stringer Lab (6) Apply Stringer Lab filter
- Svoboda Lab (6) Apply Svoboda Lab filter
- Tebo Lab (1) Apply Tebo Lab filter
- Tillberg Lab (4) Apply Tillberg Lab filter
- Turaga Lab (2) Apply Turaga Lab filter
- Turner Lab (3) Apply Turner Lab filter
- Vale Lab (2) Apply Vale Lab filter
- Wang (Shaohe) Lab (2) Apply Wang (Shaohe) Lab filter
Associated Project Team
Publication Date
- December 2022 (15) Apply December 2022 filter
- November 2022 (20) Apply November 2022 filter
- October 2022 (13) Apply October 2022 filter
- September 2022 (26) Apply September 2022 filter
- August 2022 (14) Apply August 2022 filter
- July 2022 (19) Apply July 2022 filter
- June 2022 (11) Apply June 2022 filter
- May 2022 (22) Apply May 2022 filter
- April 2022 (9) Apply April 2022 filter
- March 2022 (16) Apply March 2022 filter
- February 2022 (18) Apply February 2022 filter
- January 2022 (12) Apply January 2022 filter
- Remove 2022 filter 2022
Type of Publication
195 Publications
Showing 1-10 of 195 resultsBrains contain networks of interconnected neurons, so knowing the network architecture is essential for understanding brain function. We therefore mapped the synaptic-resolution connectome of an insect brain (Drosophila larva) with rich behavior, including learning, value-computation, and action-selection, comprising 3,013 neurons and 544,000 synapses. We characterized neuron-types, hubs, feedforward and feedback pathways, and cross-hemisphere and brain-nerve cord interactions. We found pervasive multisensory and interhemispheric integration, highly recurrent architecture, abundant feedback from descending neurons, and multiple novel circuit motifs. The brain’s most recurrent circuits comprised the input and output neurons of the learning center. Some structural features, including multilayer shortcuts and nested recurrent loops, resembled powerful machine learning architectures. The identified brain architecture provides a basis for future experimental and theoretical studies of neural circuits.
To accurately track self-location, animals need to integrate their movements through space. In amniotes, representations of self-location have been found in regions such as the hippocampus. It is unknown whether more ancient brain regions contain such representations and by which pathways they may drive locomotion. Fish displaced by water currents must prevent uncontrolled drift to potentially dangerous areas. We found that larval zebrafish track such movements and can later swim back to their earlier location. Whole-brain functional imaging revealed the circuit enabling this process of positional homeostasis. Position-encoding brainstem neurons integrate optic flow, then bias future swimming to correct for past displacements by modulating inferior olive and cerebellar activity. Manipulation of position-encoding or olivary neurons abolished positional homeostasis or evoked behavior as if animals had experienced positional shifts. These results reveal a multiregional hindbrain circuit in vertebrates for optic flow integration, memory of self-location, and its neural pathway to behavior.Competing Interest StatementThe authors have declared no competing interest.
The central amygdala (CEA) has been richly studied for interpreting function and behavior according to specific cell types and circuits. Such work has typically defined molecular cell types by classical inhibitory marker genes; consequently, whether marker-gene-defined cell types exhaustively cover the CEA and co-vary with connectivity remains unresolved. Here, we combined single-cell RNA sequencing, multiplexed fluorescent in situ hybridization, immunohistochemistry, and long-range projection mapping to derive a “bottom-up” understanding of CEA cell types. In doing so, we identify two major cell types, encompassing one-third of all CEA neurons, that have gone unresolved in previous studies. In spatially mapping these novel types, we identify a non-canonical CEA subdomain associated with Nr2f2 expression and uncover an Isl1-expressing medial cell type that accounts for many long-range CEA projections. Our results reveal new CEA organizational principles across cell types and spatial scales and provide a framework for future work examining cell-type-specific behavior and function.
Cells form networks in animal tissues through synaptic, chemical, and adhesive links. Invertebrate muscle cells often connect to other cells through desmosomes, adhesive junctions anchored by intermediate filaments. To study desmosomal networks, we skeletonised 853 muscle cells and their desmosomal partners in volume electron microscopy data covering an entire larva of the annelid . Muscle cells adhere to each other, to epithelial, glial, ciliated, and bristle-producing cells and to the basal lamina, forming a desmosomal connectome of over 2000 cells. The aciculae - chitin rods that form an endoskeleton in the segmental appendages - are highly connected hubs in this network. This agrees with the many degrees of freedom of their movement, as revealed by video microscopy. Mapping motoneuron synapses to the desmosomal connectome allowed us to infer the extent of tissue influenced by motoneurons. Our work shows how cellular-level maps of synaptic and adherent force networks can elucidate body mechanics.
Foraging animals must use decision-making strategies that dynamically adapt to the changing availability of rewards in the environment. A wide diversity of animals do this by distributing their choices in proportion to the rewards received from each option, Herrnstein’s operant matching law. Theoretical work suggests an elegant mechanistic explanation for this ubiquitous behavior, as operant matching follows automatically from simple synaptic plasticity rules acting within behaviorally relevant neural circuits. However, no past work has mapped operant matching onto plasticity mechanisms in the brain, leaving the biological relevance of the theory unclear. Here we discovered operant matching in Drosophila and showed that it requires synaptic plasticity that acts in the mushroom body and incorporates the expectation of reward. We began by developing a novel behavioral paradigm to measure choices from individual flies as they learn to associate odor cues with probabilistic rewards. We then built a model of the fly mushroom body to explain each fly’s sequential choice behavior using a family of biologically-realistic synaptic plasticity rules. As predicted by past theoretical work, we found that synaptic plasticity rules could explain fly matching behavior by incorporating stimulus expectations, reward expectations, or both. However, by optogenetically bypassing the representation of reward expectation, we abolished matching behavior and showed that the plasticity rule must specifically incorporate reward expectations. Altogether, these results reveal the first synaptic level mechanisms of operant matching and provide compelling evidence for the role of reward expectation signals in the fly brain.
Many animals rely on vision to navigate through their environment. The pattern of changes in the visual scene induced by self-motion is the optic flow1, which is first estimated in local patches by directionally selective (DS) neurons2–4. But how should the arrays of DS neurons, each responsive to motion in a preferred direction at a specific retinal position, be organized to support robust decoding of optic flow by downstream circuits? Understanding this global organization is challenging because it requires mapping fine, local features of neurons across the animal’s field of view3. In Drosophila, the asymmetric dendrites of the T4 and T5 DS neurons establish their preferred direction, making it possible to predict DS responses from anatomy4,5. Here we report that the preferred directions of fly DS neurons vary at different retinal positions and show that this spatial variation is established by the anatomy of the compound eye. To estimate the preferred directions across the visual field, we reconstructed hundreds of T4 neurons in a full brain EM volume6 and discovered unexpectedly stereotypical dendritic arborizations that are independent of location. We then used whole-head μCT scans to map the viewing directions of all compound eye facets and found a non-uniform sampling of visual space that explains the spatial variation in preferred directions. Our findings show that the organization of preferred directions in the fly is largely determined by the compound eye, exposing an intimate and unexpected connection between the peripheral structure of the eye, functional properties of neurons deep in the brain, and the control of body movements.
How memories are used by the brain to guide future action is poorly understood. In olfactory associative learning in Drosophila, multiple compartments of the mushroom body act in parallel to assign valence to a stimulus. Here, we show that appetitive memories stored in different compartments induce different levels of upwind locomotion. Using a photoactivation screen of a new collection of split-GAL4 drivers and EM connectomics, we identified a cluster of neurons postsynaptic to the mushroom body output neurons (MBONs) that can trigger robust upwind steering. These UpWind Neurons (UpWiNs) integrate inhibitory and excitatory synaptic inputs from MBONs of appetitive and aversive memory compartments, respectively. After training, disinhibition from the appetitive-memory MBONs enhances the response of UpWiNs to reward-predicting odors. Blocking UpWiNs impaired appetitive memory and reduced upwind locomotion during retrieval. Photoactivation of UpWiNs also increased the chance of returning to a location where activation was initiated, suggesting an additional role in olfactory navigation. Thus, our results provide insight into how learned abstract valences are gradually transformed into concrete memory-driven actions through divergent and convergent networks, a neuronal architecture that is commonly found in the vertebrate and invertebrate brains.
Animals flexibly switch between different actions by changing neural activity patterns for motor control. Courting Drosophila melanogaster males produce two different acoustic signals, pulse and sine song, each of which can be promoted by artificial activation of distinct neurons. However, how the activity of these neurons implements flexible song production is unknown. Here, we developed an assay to record neuronal calcium signals in the ventral nerve cord, which contains the song motor circuit, in singing flies. We found that sine-promoting neurons, but not pulse-promoting neurons, show strong activation during sine song. In contrast, both pulse- and sine-promoting neurons are active during pulse song. Furthermore, population calcium imaging in the song circuit suggests that sine song involves activation of a subset of neurons that are also active during pulse song. Thus, differential activation of overlapping, rather than distinct, neural populations underlies flexible motor actions during acoustic communication in D. melanogaster.
While insects such as are flying, aerodynamic instabilities require that they make millisecond time scale adjustments to their wing motion to stay aloft and on course. These stabilization reflexes can be modeled as a proportional-integral (PI) controller; however, it is unclear how such control might be instantiated in insects at the level of muscles and neurons. Here, we show that the b1 and b2 motor units-prominent components of the fly's steering muscle system-modulate specific elements of the PI controller: the angular displacement (integral) and angular velocity (proportional), respectively. Moreover, these effects are observed only during the stabilization of pitch. Our results provide evidence for an organizational principle in which each muscle contributes to a specific functional role in flight control, a finding that highlights the power of using top-down behavioral modeling to guide bottom-up cellular manipulation studies.
During their lifetime, animals must adapt their behavior to survive in changing environments. This ability requires the nervous system to adjust through dynamic expression of neurotransmitters and receptors but also through growth, spatial reorganization and connectivity while integrating external stimuli. For instance, despite having a fixed neuronal cell lineage, the nematode Caenorhabditis elegans’ nervous system remains plastic throughout its development. Here, we focus on a specific example of nervous system plasticity, the C. elegans dauer exit decision. Under unfavorable conditions, larvae will enter the non-feeding and non-reproductive dauer stage and adapt their behavior to cope with a new environment. Upon improved conditions, this stress resistant developmental stage is actively reversed to resume reproductive development. However, how different environmental stimuli regulate the exit decision mechanism and thereby drive the larva’s behavioral change is unknown. To fill this gap, we developed a new open hardware method for long-term imaging (12h) of C. elegans larvae. We identified dauer-specific behavioral motifs and characterized the behavioral trajectory of dauer exit in different environments to identify key decision points. Combining long-term behavioral imaging with transcriptomics, we find that bacterial ingestion triggers a change in neuropeptide gene expression to establish post-dauer behavior. Taken together, we show how a developing nervous system can robustly integrate environmental changes, activate a developmental switch and adapt the organism’s behavior to a new environment.