Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

192 Publications

Showing 31-40 of 192 results
Your Criteria:
    Looger Lab
    11/07/22 | Chemically stable fluorescent proteins for advanced microscopy.
    Campbell BC, Paez-Segala MG, Looger LL, Petsko GA, Liu CF
    Nature Methods. 2022 Nov 07;19(12):1612-21. doi: 10.1038/s41592-022-01660-7

    We report the rational engineering of a remarkably stable yellow fluorescent protein (YFP), 'hyperfolder YFP' (hfYFP), that withstands chaotropic conditions that denature most biological structures within seconds, including superfolder green fluorescent protein (GFP). hfYFP contains no cysteines, is chloride insensitive and tolerates aldehyde and osmium tetroxide fixation better than common fluorescent proteins, enabling its use in expansion and electron microscopies. We solved crystal structures of hfYFP (to 1.7-Å resolution), a monomeric variant, monomeric hyperfolder YFP (1.6 Å) and an mGreenLantern mutant (1.2 Å), and then rationally engineered highly stable 405-nm-excitable GFPs, large Stokes shift (LSS) monomeric GFP (LSSmGFP) and LSSA12 from these structures. Lastly, we directly exploited the chemical stability of hfYFP and LSSmGFP by devising a fluorescence-assisted protein purification strategy enabling all steps of denaturing affinity chromatography to be visualized using ultraviolet or blue light. hfYFP and LSSmGFP represent a new generation of robustly stable fluorescent proteins developed for advanced biotechnological applications.

    View Publication Page
    11/02/22 | Cap-dependent translation initiation monitored in living cells.
    Gandin V, English BP, Freeman M, Leroux L, Preibisch S, Walpita D, Jaramillo M, Singer RH
    Nature Communications. 2022 Nov 02;13(1):6558. doi: 10.1038/s41467-022-34052-8

    mRNA translation is tightly regulated to preserve cellular homeostasis. Despite extensive biochemical, genetic, and structural studies, a detailed understanding of mRNA translation regulation is lacking. Imaging methodologies able to resolve the binding dynamics of translation factors at single-cell and single-mRNA resolution were necessary to fully elucidate regulation of this paramount process. Here live-cell spectroscopy and single-particle tracking were combined to interrogate the binding dynamics of endogenous initiation factors to the 5'cap. The diffusion of initiation factors (IFs) changed markedly upon their association with mRNA. Quantifying their diffusion characteristics revealed the sequence of IFs assembly and disassembly in cell lines and the clustering of translation in neurons. This approach revealed translation regulation at high spatial and temporal resolution that can be applied to the formation of any endogenous complex that results in a measurable shift in diffusion.

    View Publication Page
    Sternson Lab
    11/02/22 | Characterization of Ultrapotent Chemogenetic Ligands for Research Applications in Nonhuman Primates.
    Raper J, Eldridge MA, Sternson SM, Shim JY, Fomani GP, Richmond BJ, Wichmann T, Galvan A
    ACS Chemical Neuroscience. 2022 Nov 02;13(21):3118-3125. doi: 10.1021/acschemneuro.2c00525

    Chemogenetics is a technique for obtaining selective pharmacological control over a cell population by expressing an engineered receptor that is selectively activated by an exogenously administered ligand. A promising approach for neuronal modulation involves the use of "Pharmacologically Selective Actuator Modules" (PSAMs); these chemogenetic receptors are selectively activated by ultrapotent "Pharmacologically Selective Effector Molecules" (uPSEMs). To extend the use of PSAM/PSEMs to studies in nonhuman primates, it is necessary to thoroughly characterize the efficacy and safety of these tools. We describe the time course and brain penetrance in rhesus monkeys of two compounds with promising binding specificity and efficacy profiles in studies, uPSEM792 and uPSEM817, after systemic administration. Rhesus monkeys received subcutaneous (s.c.) or intravenous (i.v.) administration of uPSEM817 (0.064 mg/kg) or uPSEM792 (0.87 mg/kg), and plasma and cerebrospinal fluid samples were collected over 48 h. Both compounds exhibited good brain penetrance, relatively slow washout, and negligible conversion to potential metabolites─varenicline or hydroxyvarenicline. In addition, we found that neither of these uPSEMs significantly altered the heart rate or sleep. Our results indicate that both compounds are suitable candidates for neuroscience studies using PSAMs in nonhuman primates.

    View Publication Page
    10/31/22 | FourierNets enable the design of highly non-local optical encoders for computational imaging
    Diptodip Deb , Zhenfei Jiao , Ruth R Sims , Alex Bo-Yuan Chen , Michael Broxton , Misha Ahrens , Kaspar Podgorski , Srinivas C Turaga , Alice H. Oh , Alekh Agarwal , Danielle Belgrave , Kyunghyun Cho
    Advances in Neural Information Processing Systems. 10/2022:. doi: https://doi.org/10.48550/arXiv.2104.10611

    Differentiable simulations of optical systems can be combined with deep learning-based reconstruction networks to enable high performance computational imaging via end-to-end (E2E) optimization of both the optical encoder and the deep decoder. This has enabled imaging applications such as 3D localization microscopy, depth estimation, and lensless photography via the optimization of local optical encoders. More challenging computational imaging applications, such as 3D snapshot microscopy which compresses 3D volumes into single 2D images, require a highly non-local optical encoder. We show that existing deep network decoders have a locality bias which prevents the optimization of such highly non-local optical encoders. We address this with a decoder based on a shallow neural network architecture using global kernel Fourier convolutional neural networks (FourierNets). We show that FourierNets surpass existing deep network based decoders at reconstructing photographs captured by the highly non-local DiffuserCam optical encoder. Further, we show that FourierNets enable E2E optimization of highly non-local optical encoders for 3D snapshot microscopy. By combining FourierNets with a large-scale multi-GPU differentiable optical simulation, we are able to optimize non-local optical encoders 170× to 7372× larger than prior state of the art, and demonstrate the potential for ROI-type specific optical encoding with a programmable microscope.

    View Publication Page
    10/28/22 | High-throughput automated methods for classical and operant conditioning of larvae.
    Croteau-Chonka EC, Clayton MS, Venkatasubramanian L, Harris SN, Jones BM, Narayan L, Winding M, Masson J, Zlatic M, Klein KT
    eLife. 2022 Oct 28;11:. doi: 10.7554/eLife.70015

    Learning which stimuli (classical conditioning) or which actions (operant conditioning) predict rewards or punishments can improve chances of survival. However, the circuit mechanisms that underlie distinct types of associative learning are still not fully understood. Automated, high-throughput paradigms for studying different types of associative learning, combined with manipulation of specific neurons in freely behaving animals, can help advance this field. The Drosophila melanogaster larva is a tractable model system for studying the circuit basis of behaviour, but many forms of associative learning have not yet been demonstrated in this animal. Here, we developed a high-throughput (i. e. multi-larva) training system that combines real-time behaviour detection of freely moving larvae with targeted opto- and thermogenetic stimulation of tracked animals. Both stimuli are controlled in either open- or closed-loop, and delivered with high temporal and spatial precision. Using this tracker, we show for the first time that Drosophila larvae can perform classical conditioning with no overlap between sensory stimuli (i. e. trace conditioning). We also demonstrate that larvae are capable of operant conditioning by inducing a bend direction preference through optogenetic activation of reward-encoding serotonergic neurons. Our results extend the known associative learning capacities of Drosophila larvae. Our automated training rig will facilitate the study of many different forms of associative learning and the identification of the neural circuits that underpin them.

    View Publication Page
    10/27/22 | Spatial organization of the 3D genome encodes gene co-expression programs in single cells
    Peng Dong , Shu Zhang , Liangqi Xie , Lihua Wang , Andrew L. Lemire , Arthur D. Lander , Howard Y. Chang , Zhe J. Liu
    bioRxiv. 2022 Oct 27:. doi: 10.1101/2022.10.26.513917

    Deconstructing the mechanism by which the 3D genome encodes genetic information to generate diverse cell types during animal development is a major challenge in biology. The contrast between the elimination of chromatin loops and domains upon Cohesin loss and the lack of downstream gene expression changes at the cell population level instigates intense debates regarding the structure-function relationship between genome organization and gene regulation. Here, by analyzing single cells after acute Cohesin removal with sequencing and spatial genome imaging techniques, we discover that, instead of dictating population-wide gene expression levels, 3D genome topology mediated by Cohesin safeguards long-range gene co-expression correlations in single cells. Notably, Cohesin loss induces gene co-activation and chromatin co-opening between active domains in cis up to tens of megabase apart, far beyond the typical length scale of enhancer-promoter communication. In addition, Cohesin separates Mediator protein hubs, prevents active genes in cis from localizing into shared hubs and blocks intersegment transfer of diverse transcriptional regulators. Together, these results support that spatial organization of the 3D genome orchestrates dynamic long-range gene and chromatin co-regulation in single living cells.

    View Publication Page
    10/26/22 | Muscles that move the retina augment compound eye vision in Drosophila.
    Fenk LM, Avritzer SC, Weisman JL, Nair A, Randt LD, Mohren TL, Siwanowicz I, Maimon G
    Nature. 2022 Oct 26:. doi: 10.1038/s41586-022-05317-5

    Most animals have compound eyes, with tens to thousands of lenses attached rigidly to the exoskeleton. A natural assumption is that all of these species must resort to moving either their head or their body to actively change their visual input. However, classic anatomy has revealed that flies have muscles poised to move their retinas under the stable lenses of each compound eye. Here we show that Drosophila use their retinal muscles to smoothly track visual motion, which helps to stabilize the retinal image, and also to perform small saccades when viewing a stationary scene. We show that when the retina moves, visual receptive fields shift accordingly, and that even the smallest retinal saccades activate visual neurons. Using a head-fixed behavioural paradigm, we find that Drosophila perform binocular, vergence movements of their retinas-which could enhance depth perception-when crossing gaps, and impairing the physiology of retinal motor neurons alters gap-crossing trajectories during free behaviour. That flies evolved an ability to actuate their retinas suggests that moving the eye independently of the head is broadly paramount for animals. The similarities of smooth and saccadic movements of the Drosophila retina and the vertebrate eye highlight a notable example of convergent evolution.

    View Publication Page
    10/26/22 | Rapid reconstruction of neural circuits using tissue expansion and lattice light sheet microscopy
    Joshua L. Lillvis , Hideo Otsuna , Xiaoyu Ding , Igor Pisarev , Takashi Kawase , Jennifer Colonell , Konrad Rokicki , Cristian Goina , Ruixuan Gao , Amy Hu , Kaiyu Wang , John Bogovic , Daniel E. Milkie , Edward S. Boyden , Stephan Saalfeld , Paul W. Tillberg , Barry J. Dickson
    eLife. 2022 Oct 26:. doi: 10.7554/eLife.81248

    Electron microscopy (EM) allows for the reconstruction of dense neuronal connectomes but suffers from low throughput, limiting its application to small numbers of reference specimens. We developed a protocol and analysis pipeline using tissue expansion and lattice light-sheet microscopy (ExLLSM) to rapidly reconstruct selected circuits across many samples with single synapse resolution and molecular contrast. We validate this approach in Drosophila, demonstrating that it yields synaptic counts similar to those obtained by EM, can be used to compare counts across sex and experience, and to correlate structural connectivity with functional connectivity. This approach fills a critical methodological gap in studying variability in the structure and function of neural circuits across individuals within and between species.

    View Publication Page
    10/22/22 | Single molecule microscopy to profile the effect of zinc status on transcription factor dynamics.
    Damon LJ, Aaron J, Palmer AE
    Scientific Reports. 2022 Oct 22;12(1):17789. doi: 10.1038/s41598-022-22634-x

    The regulation of transcription is a complex process that involves binding of transcription factors (TFs) to specific sequences, recruitment of cofactors and chromatin remodelers, assembly of the pre-initiation complex and recruitment of RNA polymerase II. Increasing evidence suggests that TFs are highly dynamic and interact only transiently with DNA. Single molecule microscopy techniques are powerful approaches for tracking individual TF molecules as they diffuse in the nucleus and interact with DNA. Here we employ multifocus microscopy and highly inclined laminated optical sheet microscopy to track TF dynamics in response to perturbations in labile zinc inside cells. We sought to define whether zinc-dependent TFs sense changes in the labile zinc pool by determining whether their dynamics and DNA binding can be modulated by zinc. We used fluorescently tagged versions of the glucocorticoid receptor (GR), with two C4 zinc finger domains, and CCCTC-binding factor (CTCF), with eleven C2H2 zinc finger domains. We found that GR was largely insensitive to perturbations of zinc, whereas CTCF was significantly affected by zinc depletion and its dwell time was affected by zinc elevation. These results indicate that at least some transcription factors are sensitive to zinc dynamics, revealing a potential new layer of transcriptional regulation.

    View Publication Page
    10/19/22 | In vivo visualization of nitrate dynamics using a genetically encoded biosensor
    Yen-Ning Chen , Heather Cartwright , Cheng-Hsun Ho
    Science Advances. 2022 Oct 19;8(42):. doi: 10.1126/sciadv.abq4915

    Nitrate (NO3-) uptake and distribution are critical to plant life. Although the upstream regulation of nitrate uptake and downstream responses to nitrate in a variety of cells have been well-studied, it is still not possible to directly visualize the spatial and temporal distribution of nitrate with high resolution at the cellular level. Here, we report a nuclear-localized, genetically encoded biosensor, nlsNitraMeter3.0, for the quantitative visualization of nitrate distribution in Arabidopsis thaliana. The biosensor tracked the spatiotemporal distribution of nitrate along the primary root axis and disruptions by genetic mutation of transport (low nitrate uptake) and assimilation (high nitrate accumulation). The developed biosensor effectively monitors nitrate concentrations at cellular level in real time and spatiotemporal changes during the plant life cycle.

    View Publication Page