Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

193 Publications

Showing 71-80 of 193 results
Your Criteria:
    09/02/22 | Tracing and Manipulating Drosophila Cell Lineages Based on CRISPR: CaSSA and CLADES.
    Garcia-Marques J, Lee T
    Methods in Molecular Biology. 2022 Sep 02;2540:201-217. doi: 10.1007/978-1-0716-2541-5_9

    Cell lineage defines the mitotic connection between cells that make up an organism. Mapping these connections in relation to cell identity offers an extraordinary insight into the mechanisms underlying normal and pathological development. The analysis of molecular determinants involved in the acquisition of cell identity requires gaining experimental access to precise parts of cell lineages. Recently, we have developed CaSSA and CLADES, a new technology based on CRISPR that allows targeting and labeling specific lineage branches. Here we discuss how to better exploit this technology for lineage studies in Drosophila, with an emphasis on neuronal specification.

    View Publication Page
    09/01/22 | A serotonergic axon-cilium synapse drives nuclear signaling to maintain chromatin accessibility
    Shu-Hsien Sheu , Srigokul Upadhyayula , Vincent Dupuy , Song Pang , Andrew L. Lemire , Deepika Walpita , H. Amalia Pasolli , Fei Deng , Jinxia Wan , Lihua Wang , Justin Houser , Silvia Sanchez-Martinez , Sebastian E. Brauchi , Sambashiva Banala , Melanie Freeman , C. Shan Xu , Tom Kirchhausen , Harald F. Hess , Luke Lavis , Yu-Long Li , Séverine Chaumont-Dubel , David E. Clapham
    Cell. 2022 Sep 01;185(18):3390-3407. doi: 10.1016/j.cell.2022.07.026

    Chemical synapses between axons and dendrites mediate much of the brain’s intercellular communication. Here we describe a new kind of synapse – the axo-ciliary synapse - between axons and primary cilia. By employing enhanced focused ion beam – scanning electron microscopy on samples with optimally preserved ultrastructure, we discovered synapses between the serotonergic axons arising from the brainstem, and the primary cilia of hippocampal CA1 pyramidal neurons. Functionally, these cilia are enriched in a ciliary-restricted serotonin receptor, 5-hydroxytryptamine receptor 6 (HTR6), whose mutation is associated with learning and memory defects. Using a newly developed cilia-targeted serotonin sensor, we show that optogenetic stimulation of serotonergic axons results in serotonin release onto cilia. Ciliary HTR6 stimulation activates a non-canonical Gαq/11-RhoA pathway. Ablation of this pathway results in nuclear actin and chromatin accessibility changes in CA1 pyramidal neurons. Axo-ciliary synapses serve as a distinct mechanism for neuromodulators to program neuron transcription through privileged access to the nuclear compartment.

    View Publication Page
    09/01/22 | Post-gastrulation synthetic embryos generated ex utero from mouse naive ESCs
    Shadi Tarazi , Alejandro Aguilera-Castrejon , Carine Joubran , Nadir Ghanem , Shahd Ashouokhi , Francesco Roncato , Emilie Wildschutz , Montaser Haddad , Bernardo Oldak , Elidet Gomez-Cesar , Nir Livnat , Sergey Viukov , Dmitry Lokshtanov , Segev Naveh-Tassa , Max Rose , Suhair Hanna , Calanit Raanan , Ori Brenner , Merav Kedmi , Hadas Keren-Shaul , Tsvee Lapidot , Itay Maza , Noa Novershtern , Jacob H. Hanna
    Cell. 09/2022;185:3290-3306.e25. doi: https://doi.org/10.1016/j.cell.2022.07.028

    Summary In vitro cultured stem cells with distinct developmental capacities can contribute to embryonic or extraembryonic tissues after microinjection into pre-implantation mammalian embryos. However, whether cultured stem cells can independently give rise to entire gastrulating embryo-like structures with embryonic and extraembryonic compartments remains unknown. Here, we adapt a recently established platform for prolonged ex utero growth of natural embryos to generate mouse post-gastrulation synthetic whole embryo models (sEmbryos), with both embryonic and extraembryonic compartments, starting solely from naive ESCs. This was achieved by co-aggregating non-transduced ESCs, with naive ESCs transiently expressing Cdx2 or Gata4 to promote their priming toward trophectoderm and primitive endoderm lineages, respectively. sEmbryos adequately accomplish gastrulation, advance through key developmental milestones, and develop organ progenitors within complex extraembryonic compartments similar to E8.5 stage mouse embryos. Our findings highlight the plastic potential of naive pluripotent cells to self-organize and functionally reconstitute and model the entire mammalian embryo beyond gastrulation.

    View Publication Page
    08/25/22 | In situ single particle classification reveals distinct 60S maturation intermediates in cells.
    Bronwyn A. Lucas , Kexin Zhang , Sarah Loerch , Nikolaus Grigorieff
    eLife. 2022 Aug 25:. doi: 10.7554/eLife.79272

    Electron cryo-microscopy (cryo-EM) can generate high-resolution views of cells with faithful preservation of molecular structure. In situ cryo-EM, therefore, has enormous potential to reveal the atomic details of biological processes in their native context. However, in practice, the utility of in situ cryo-EM is limited by the difficulty of reliably locating and confidently identifying molecular targets (particles) and their conformational states in the crowded cellular environment. We recently showed that 2DTM, a fine-grained template-based search applied to cryo-EM micrographs, can localize particles in two-dimensional views of cells with high precision. Here we demonstrate that the signal-to-noise ratio (SNR) observed with 2DTM can be used to differentiate related complexes in focused ion beam (FIB)-milled cell sections. We apply this method in two contexts to locate and classify related intermediate states of 60S ribosome biogenesis in the Saccharomyces cerevisiae cell nucleus. In the first, we separate the nuclear pre-60S population from the cytoplasmic mature 60S population, using the subcellular localization to validate assignment. In the second, we show that relative 2DTM SNRs can be used to separate mixed populations of nuclear pre-60S that are not visually separable. We use a maximum likelihood approach to define the probability of each particle belonging to each class, thereby establishing a statistic to describe the confidence of our classification. Without the need to generate 3D reconstructions, 2DTM can be applied even when only a few target particles exist in a cell.

    View Publication Page
    08/24/22 | A single-cell transcriptomic atlas of complete insect nervous systems across multiple life stages.
    Corrales M, Cocanougher BT, Kohn AB, Wittenbach JD, Long XS, Lemire A, Cardona A, Singer RH, Moroz LL, Zlatic M
    Neural Development. 2022 Aug 24;17(1):8. doi: 10.1186/s13064-022-00164-6

    Molecular profiles of neurons influence neural development and function but bridging the gap between genes, circuits, and behavior has been very difficult. Here we used single cell RNAseq to generate a complete gene expression atlas of the Drosophila larval central nervous system composed of 131,077 single cells across three developmental stages (1 h, 24 h and 48 h after hatching). We identify 67 distinct cell clusters based on the patterns of gene expression. These include 31 functional mature larval neuron clusters, 1 ring gland cluster, 8 glial clusters, 6 neural precursor clusters, and 13 developing immature adult neuron clusters. Some clusters are present across all stages of larval development, while others are stage specific (such as developing adult neurons). We identify genes that are differentially expressed in each cluster, as well as genes that are differentially expressed at distinct stages of larval life. These differentially expressed genes provide promising candidates for regulating the function of specific neuronal and glial types in the larval nervous system, or the specification and differentiation of adult neurons. The cell transcriptome Atlas of the Drosophila larval nervous system is a valuable resource for developmental biology and systems neuroscience and provides a basis for elucidating how genes regulate neural development and function.

    View Publication Page
    08/23/22 | Transverse endoplasmic reticulum expansion in hereditary spastic paraplegia corticospinal axons.
    Zhu P, Hung H, Batchenkova N, Nixon-Abell J, Henderson J, Zheng P, Renvoisé B, Pang S, Xu CS, Saalfeld S, Funke J, Xie Y, Svara F, Hess HF, Blackstone C
    Human Molecular Genetics. 2022 Aug 23;31(16):2779-2795. doi: 10.1093/hmg/ddac072

    Hereditary spastic paraplegias (HSPs) comprise a large group of inherited neurologic disorders affecting the longest corticospinal axons (SPG1-86 plus others), with shared manifestations of lower extremity spasticity and gait impairment. Common autosomal dominant HSPs are caused by mutations in genes encoding the microtubule-severing ATPase spastin (SPAST; SPG4), the membrane-bound GTPase atlastin-1 (ATL1; SPG3A) and the reticulon-like, microtubule-binding protein REEP1 (REEP1; SPG31). These proteins bind one another and function in shaping the tubular endoplasmic reticulum (ER) network. Typically, mouse models of HSPs have mild, later onset phenotypes, possibly reflecting far shorter lengths of their corticospinal axons relative to humans. Here, we have generated a robust, double mutant mouse model of HSP in which atlastin-1 is genetically modified with a K80A knock-in (KI) missense change that abolishes its GTPase activity, whereas its binding partner Reep1 is knocked out. Atl1KI/KI/Reep1-/- mice exhibit early onset and rapidly progressive declines in several motor function tests. Also, ER in mutant corticospinal axons dramatically expands transversely and periodically in a mutation dosage-dependent manner to create a ladder-like appearance, on the basis of reconstructions of focused ion beam-scanning electron microscopy datasets using machine learning-based auto-segmentation. In lockstep with changes in ER morphology, axonal mitochondria are fragmented and proportions of hypophosphorylated neurofilament H and M subunits are dramatically increased in Atl1KI/KI/Reep1-/- spinal cord. Co-occurrence of these findings links ER morphology changes to alterations in mitochondrial morphology and cytoskeletal organization. Atl1KI/KI/Reep1-/- mice represent an early onset rodent HSP model with robust behavioral and cellular readouts for testing novel therapies.

    View Publication Page
    08/22/22 | Neuronal circuits integrating visual motion information in Drosophila melanogaster.
    Shinomiya K, Nern A, Meinertzhagen IA, Plaza SM, Reiser MB
    Current Biology. 2022 Aug 22;32(16):3529-3544. doi: 10.1016/j.cub.2022.06.061

    The detection of visual motion enables sophisticated animal navigation, and studies on flies have provided profound insights into the cellular and circuit bases of this neural computation. The fly's directionally selective T4 and T5 neurons encode ON and OFF motion, respectively. Their axons terminate in one of the four retinotopic layers in the lobula plate, where each layer encodes one of the four directions of motion. Although the input circuitry of the directionally selective neurons has been studied in detail, the synaptic connectivity of circuits integrating T4/T5 motion signals is largely unknown. Here, we report a 3D electron microscopy reconstruction, wherein we comprehensively identified T4/T5's synaptic partners in the lobula plate, revealing a diverse set of new cell types and attributing new connectivity patterns to the known cell types. Our reconstruction explains how the ON- and OFF-motion pathways converge. T4 and T5 cells that project to the same layer connect to common synaptic partners and comprise a core motif together with bilayer interneurons, detailing the circuit basis for computing motion opponency. We discovered pathways that likely encode new directions of motion by integrating vertical and horizontal motion signals from upstream T4/T5 neurons. Finally, we identify substantial projections into the lobula, extending the known motion pathways and suggesting that directionally selective signals shape feature detection there. The circuits we describe enrich the anatomical basis for experimental and computations analyses of motion vision and bring us closer to understanding complete sensory-motor pathways.

    View Publication Page
    08/22/22 | Visual projection neuron convergence and compensation in developing sensorimotor circuits in the Drosophila optic glomeruli
    Brennan W. McFarland , HyoJong Jang , Natalie Smolin , Tanja A. Godenschwege , Aljoscha Nern , Yerbol Z. Kurmangaliyev , Catherine R. von Reyn

    Visual features detected by the early visual system must be combined into higher order representations to guide behavioral decision. Although key developmental mechanisms that enable the separation of visual feature channels in early visual circuits have been discovered, relatively little is known about the mechanisms that underlie their convergence in later stages of visual processing. Here we explore the development of a functionally well-characterized sensorimotor circuit in Drosophila melanogaster, the convergence of visual projection neurons (VPNs) onto the dendrites of a large descending neuron called the giant fiber (GF). We find two VPNs encoding different visual features that target the same giant fiber dendrite establish their territories on the dendrite, in part, through sequential axon arrival during development prior to synaptogenesis. Physical occupancy is important to maintain territories, as we find the ablation of one VPN results in expanded dendrite territory of the remaining VPN, and that this compensation enables the GF to remain responsive to ethologically relevant visual stimuli. Our data highlight temporal mechanisms for visual feature convergence and promote the GF circuit, and the Drosophila optic glomeruli where VPN to GF connectivity resides, as an ideal developmental model for investigating complex wiring programs and plasticity in visual feature convergence.

    View Publication Page
    08/19/22 | Flexible control of behavioral variability mediated by an internal representation of head direction
    Chuntao Dan , Brad K. Hulse , Vivek Jayaraman , Ann M. Hermundstad
    bioRxiv. 2022 Aug 19:. doi: 10.1101/2021.08.18.456004

    Internal representations are thought to support the generation of flexible, long-timescale behavioral patterns in both animals and artificial agents. Here, we present a novel conceptual framework for how Drosophila use their internal representation of head direction to maintain preferred headings in their surroundings, and how they learn to modify these preferences in the presence of selective thermal reinforcement. To develop the framework, we analyzed flies’ behavior in a classical operant visual learning paradigm and found that they use stochastically generated fixations and directed turns to express their heading preferences. Symmetries in the visual scene used in the paradigm allowed us to expose how flies’ probabilistic behavior in this setting is tethered to their head direction representation. We describe how flies’ ability to quickly adapt their behavior to the rules of their environment may rest on a behavioral policy whose parameters are flexible but whose form is genetically encoded in the structure of their circuits. Many of the mechanisms we outline may also be relevant for rapidly adaptive behavior driven by internal representations in other animals, including mammals.

    View Publication Page
    06/21/24 | A vast space of compact strategies for highly efficient decisions
    Tzuhsuan Ma , Ann M Hermundstad
    Sci. Adv.. 2024 Jun 21;10(25):. doi: 10.1101/2022.08.10.503471

    Inference-based decision-making, which underlies a broad range of behavioral tasks, is typically studied using a small number of handcrafted models. We instead enumerate a complete ensemble of strategies that could be used to effectively, but not necessarily optimally, solve a dynamic foraging task. Each strategy is expressed as a behavioral "program" that uses a limited number of internal states to specify actions conditioned on past observations. We show that the ensemble of strategies is enormous-comprising a quarter million programs with up to five internal states-but can nevertheless be understood in terms of algorithmic "mutations" that alter the structure of individual programs. We devise embedding algorithms that reveal how mutations away from a Bayesian-like strategy can diversify behavior while preserving performance, and we construct a compositional description to link low-dimensional changes in algorithmic structure with high-dimensional changes in behavior. Together, this work provides an alternative approach for understanding individual variability in behavior across animals and tasks.

    View Publication Page