Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3 Publications

Showing 1-3 of 3 results
Your Criteria:
    Chklovskii Lab

    In the primate primary visual area (V1), the ocular dominance pattern consists of alternating monocular stripes. Stripe orientation follows systematic trends preserved across several species. I propose that these trends result from minimizing the length of intra-cortical wiring needed to recombine information from the two eyes in order to achieve the perception of depth. I argue that the stripe orientation at any point of V1 should follow the direction of binocular disparity in the corresponding point of the visual field. The optimal pattern of stripes determined from this argument agrees with the ocular dominance pattern of macaque and Cebus monkeys. This theory predicts that for any point in the visual field the limits of depth perception are greatest in the direction along the ocular dominance stripes at that point.

    View Publication Page
    Chklovskii Lab
    04/01/00 | Optimal sizes of dendritic and axonal arbors in a topographic projection.
    Chklovskii DB
    Journal of Neurophysiology. 2000;83(4):2113-19

    I consider a topographic projection between two neuronal layers with different densities of neurons. Given the number of output neurons connected to each input neuron (divergence) and the number of input neurons synapsing on each output neuron (convergence), I determine the widths of axonal and dendritic arbors which minimize the total volume of axons and dendrites. Analytical results for one-dimensional and two-dimensional projections can be summarized qualitatively in the following rule: neurons of the sparser layer should have arbors wider than those of the denser layer. This agrees with the anatomic data for retinal, cerebellar, olfactory bulb, and neocortical neurons the morphology and connectivity of which are known. The rule may be used to infer connectivity of neurons from their morphology.

    View Publication Page
    Chklovskii Lab
    01/01/00 | A wire length minimization approach to ocular dominance patterns in mammalian visual cortex.
    Chklovskii DB, Koulakov AA
    Physica A. 2000;284:318-34