Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
general_search_page-panel_pane_1 | views_panes

62 Publications

Showing 51-60 of 62 results
Your Criteria:
    Grigorieff Lab
    06/01/11 | Recent progress in understanding Alzheimer’s β-amyloid structures.
    Fändrich M, Schmidt M, Grigorieff N
    Trends in Biochemical Sciences. 2011 Jun;36(6):338-45. doi: 10.1016/j.tibs.2011.02.002

    The formation of amyloid fibrils, protofibrils and oligomers from the β-amyloid (Aβ) peptide represents a hallmark of Alzheimer’s disease. Aβ-peptide-derived assemblies might be crucial for disease onset, but determining their atomic structures has proven to be a major challenge. Progress over the past 5 years has yielded substantial new data obtained with improved methodologies including electron cryo-microscopy and NMR. It is now possible to resolve the global fibril topology and the cross-β sheet organization within protofilaments, and to identify residues that are crucial for stabilizing secondary structural elements and peptide conformations within specific assemblies. These data have significantly enhanced our understanding of the mechanism of Aβ aggregation and have illuminated the possible relevance of specific conformers for neurodegenerative pathologies.

    View Publication Page
    Grigorieff Lab
    04/01/11 | Near-atomic resolution reconstructions of icosahedral viruses from electron cryo-microscopy.
    Grigorieff N, Harrison SC
    Current Opinion in Structural Biology. 2011 Apr;21(2):265-73. doi: 10.1016/j.sbi.2011.01.008

    Nine different near-atomic resolution structures of icosahedral viruses, determined by electron cryo-microscopy and published between early 2008 and late 2010, fulfil predictions made 15 years ago that single-particle cryo-EM techniques could visualize molecular detail at 3-4A resolution. This review summarizes technical developments, both in instrumentation and in computation, that have led to the new structures, which advance our understanding of virus assembly and cell entry.

    View Publication Page
    Grigorieff Lab
    01/19/11 | Atomic model of an infectious rotavirus particle.
    Settembre EC, Chen JZ, Dormitzer PR, Grigorieff N, Harrison SC
    The EMBO Journal. 2011 Jan 19;30(2):408-16. doi: 10.1038/emboj.2010.322

    Non-enveloped viruses of different types have evolved distinct mechanisms for penetrating a cellular membrane during infection. Rotavirus penetration appears to occur by a process resembling enveloped-virus fusion: membrane distortion linked to conformational changes in a viral protein. Evidence for such a mechanism comes from crystallographic analyses of fragments of VP4, the rotavirus-penetration protein, and infectivity analyses of structure-based VP4 mutants. We describe here the structure of an infectious rotavirus particle determined by electron cryomicroscopy (cryoEM) and single-particle analysis at about 4.3 Å resolution. The cryoEM image reconstruction permits a nearly complete trace of the VP4 polypeptide chain, including the positions of most side chains. It shows how the two subfragments of VP4 (VP8(*) and VP5(*)) retain their association after proteolytic cleavage, reveals multiple structural roles for the β-barrel domain of VP5(*), and specifies interactions of VP4 with other capsid proteins. The virion model allows us to integrate structural and functional information into a coherent mechanism for rotavirus entry.

    View Publication Page
    Grigorieff Lab
    12/01/10 | GPU-enabled FREALIGN: accelerating single particle 3D reconstruction and refinement in Fourier space on graphics processors.
    Li X, Grigorieff N, Cheng Y
    Journal of Structural Biology. 2010 Dec;172(3):407-12. doi: 10.1016/j.jsb.2010.06.010

    Among all the factors that determine the resolution of a 3D reconstruction by single particle electron cryo-microscopy (cryoEM), the number of particle images used in the dataset plays a major role. More images generally yield better resolution, assuming the imaged protein complex is conformationally and compositionally homogeneous. To facilitate processing of very large datasets, we modified the computer program, FREALIGN, to execute the computationally most intensive procedures on Graphics Processing Units (GPUs). Using the modified program, the execution speed increased between 10 and 240-fold depending on the task performed by FREALIGN. Here we report the steps necessary to parallelize critical FREALIGN subroutines and evaluate its performance on computers with multiple GPUs.

    View Publication Page
    Grigorieff Lab
    10/14/10 | The Ndc80 kinetochore complex forms oligomeric arrays along microtubules.
    Alushin GM, Ramey VH, Pasqualato S, Ball DA, Grigorieff N, Musacchio A, Nogales E
    Nature. 2010 Oct 14;467(7317):805-10. doi: 10.1038/nature09423

    The Ndc80 complex is a key site of regulated kinetochore-microtubule attachment (a process required for cell division), but the molecular mechanism underlying its function remains unknown. Here we present a subnanometre-resolution cryo-electron microscopy reconstruction of the human Ndc80 complex bound to microtubules, sufficient for precise docking of crystal structures of the component proteins. We find that the Ndc80 complex binds the microtubule with a tubulin monomer repeat, recognizing α- and β-tubulin at both intra- and inter-tubulin dimer interfaces in a manner that is sensitive to tubulin conformation. Furthermore, Ndc80 complexes self-associate along protofilaments through interactions mediated by the amino-terminal tail of the NDC80 protein, which is the site of phospho-regulation by Aurora B kinase. The complex’s mode of interaction with the microtubule and its oligomerization suggest a mechanism by which Aurora B could regulate the stability of load-bearing kinetochore-microtubule attachments.

    View Publication Page
    Grigorieff Lab
    06/28/10 | Adenomatous polyposis coli protein nucleates actin assembly and synergizes with the formin mDia1.
    Okada K, Bartolini F, Deaconescu AM, Moseley JB, Dogic Z, Grigorieff N, Gundersen GG, Goode BL
    The Journal of Cell Biology. 2010 Jun 28;189(7):1087-96. doi: 10.1083/jcb.201001016

    The tumor suppressor protein adenomatous polyposis coli (APC) regulates cell protrusion and cell migration, processes that require the coordinated regulation of actin and microtubule dynamics. APC localizes in vivo to microtubule plus ends and actin-rich cortical protrusions, and has well-documented direct effects on microtubule dynamics. However, its potential effects on actin dynamics have remained elusive. Here, we show that the C-terminal "basic" domain of APC (APC-B) potently nucleates the formation of actin filaments in vitro and stimulates actin assembly in cells. Nucleation is achieved by a mechanism involving APC-B dimerization and recruitment of multiple actin monomers. Further, APC-B nucleation activity is synergistic with its in vivo binding partner, the formin mDia1. Together, APC-B and mDia1 overcome a dual cellular barrier to actin assembly imposed by profilin and capping protein. These observations define a new function for APC and support an emerging view of collaboration between distinct actin assembly-promoting factors with complementary activities.

    View Publication Page
    Grigorieff Lab
    04/06/10 | Subunit interactions in bovine papillomavirus.
    Wolf M, Garcea RL, Grigorieff N, Harrison SC
    Proceedings of the National Academy of Sciences of the United States of America. 2010 Apr 6;107:6298-303. doi: 10.1073/pnas.0914604107

    Papillomaviruses, members of a group of dsDNA viruses associated with epithelial growths and tumors, have compact capsids assembled from 72 pentamers of the protein L1. We have determined the structure of bovine papillomavirus by electron cryomicrosopy (cryoEM), at approximately 3.6 A resolution. The density map, obtained from single-particle analysis of approximately 4,000 particle images, shows the trace of the L1 polypeptide chain and reveals how the N- and C-terminal "arms" of a subunit (extensions from its beta-jelly-roll core) associate with a neighboring pentamer. Critical contacts come from the C-terminal arm, which loops out from the core of the subunit, forms contacts (including a disulfide) with two subunits in a neighboring pentamer, and reinserts into the pentamer from which it emanates. This trace corrects one feature of an earlier model. We discuss implications of the structure for virion assembly and for pathways of infectious viral entry. We suggest that it should be possible to obtain image reconstructions of comparable resolution from cryoEM images of asymmetric particles. From the work on papillomavirus described here, we estimate that such a reconstruction will require about 1.5 million images to achieve the same number of averaged asymmetric units; structural variability will increase this number substantially.

    View Publication Page
    Grigorieff Lab
    02/08/10 | Nanoscale flexibility parameters of Alzheimer amyloid fibrils determined by electron cryo-microscopy.
    Sachse C, Grigorieff N, Fändrich M
    Angewandte Chemie (International ed. in English). 2010 Feb 8;49(7):1321-3. doi: 10.1002/anie.200904781

    Versatile nanomaterial: Unusually high nanoscale flexibility was displayed by amyloid fibils in electron microscopy studies (see picture). This finding is relevant for understanding amyloid pathogenicity and for potential biotechnological applications.

    View Publication Page
    Grigorieff Lab
    02/03/10 | Structure of clathrin coat with bound Hsc70 and auxilin: mechanism of Hsc70-facilitated disassembly.
    Xing Y, Böcking T, Wolf M, Grigorieff N, Kirchhausen T, Harrison SC
    The EMBO Journal. 2010 Feb 3;29(3):655-65. doi: 10.1038/emboj.2009.383

    The chaperone Hsc70 drives the clathrin assembly-disassembly cycle forward by stimulating dissociation of a clathrin lattice. A J-domain containing co-chaperone, auxilin, associates with a freshly budded clathrin-coated vesicle, or with an in vitro assembled clathrin coat, and recruits Hsc70 to its specific heavy-chain-binding site. We have determined by electron cryomicroscopy (cryoEM), at about 11 A resolution, the structure of a clathrin coat (in the D6-barrel form) with specifically bound Hsc70 and auxilin. The Hsc70 binds a previously analysed site near the C-terminus of the heavy chain, with a stoichiometry of about one per three-fold vertex. Its binding is accompanied by a distortion of the clathrin lattice, detected by a change in the axial ratio of the D6 barrel. We propose that when Hsc70, recruited to a position close to its target by the auxilin J-domain, splits ATP, it clamps firmly onto its heavy-chain site and locks in place a transient fluctuation. Accumulation of the local strain thus imposed at multiple vertices can then lead to disassembly.

    View Publication Page
    Grigorieff Lab
    06/30/09 | Molecular interactions in rotavirus assembly and uncoating seen by high-resolution cryo-EM.
    Chen JZ, Settembre EC, Aoki ST, Zhang X, Bellamy AR, Dormitzer PR, Harrison SC, Grigorieff N
    Proceedings of the National Academy of Sciences of the United States of America. 2009 Jun 30;106(26):10644-8. doi: 10.1073/pnas.0904024106

    Rotaviruses, major causes of childhood gastroenteritis, are nonenveloped, icosahedral particles with double-strand RNA genomes. By the use of electron cryomicroscopy and single-particle reconstruction, we have visualized a rotavirus particle comprising the inner capsid coated with the trimeric outer-layer protein, VP7, at a resolution (4 A) comparable with that of X-ray crystallography. We have traced the VP7 polypeptide chain, including parts not seen in its X-ray crystal structure. The 3 well-ordered, 30-residue, N-terminal "arms" of each VP7 trimer grip the underlying trimer of VP6, an inner-capsid protein. Structural differences between free and particle-bound VP7 and between free and VP7-coated inner capsids may regulate mRNA transcription and release. The Ca(2+)-stabilized VP7 intratrimer contact region, which presents important neutralizing epitopes, is unaltered upon capsid binding.

    View Publication Page