Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

5 Publications

Showing 1-5 of 5 results
Your Criteria:

    ro(Dom) is a dominant allele of rough (ro) that results in reduced eye size due to premature arrest in morphogenetic furrow (MF) progression. We found that the ro(Dom) stop-furrow phenotype was sensitive to the dosage of genes known to affect retinal differentiation, in particular members of the hedgehog (hh) signaling cascade. We demonstrate that ro(Dom) interferes with Hh's ability to induce the retina-specific proneural gene atonal (ato) in the MF and that normal eye size can be restored by providing excess Ato protein. We used ro(Dom) as a sensitive genetic background in which to identify mutations that affect hh signal transduction or regulation of ato expression. In addition to mutations in several unknown loci, we recovered multiple alleles of groucho (gro) and Hairless (H). Analysis of their phenotypes in somatic clones suggests that both normally act to restrict neuronal cell fate in the retina, although they control different aspects of ato's complex expression pattern.

    View Publication Page
    10/01/00 | Functional ethanol tolerance in Drosophila.
    Scholz H, Ramond J, Singh CM, Heberlein U
    Neuron. 2000 Oct;28:261-71

    In humans, repeated alcohol consumption leads to the development of tolerance, manifested as a reduced physiological and behavioral response to a particular dose of alcohol. Here we show that adult Drosophila develop tolerance to the sedating and motor-impairing effects of ethanol with kinetics of acquisition and dissipation that mimic those seen in mammals. Importantly, this tolerance is not caused by changes in ethanol absorption or metabolism. Rather, the development of tolerance requires the functional and structural integrity of specific central brain regions. Mutants unable to synthesize the catecholamine octopamine are also impaired in their ability to develop tolerance. Taken together, these data show that Drosophila is a suitable model system in which to study the molecular and neuroanatomical bases of ethanol tolerance.

    View Publication Page
    08/01/00 | Genetic control of acute ethanol-induced behaviors in Drosophila.
    Singh CM, Heberlein U
    Alcoholism, Clinical and Experimental Research. 2000 Aug;24(8):1127-36

    BACKGROUND: In most organisms in which acute ethanol exposure has been studied, it leads to similar changes in behavior. Generally, low ethanol doses activate the central nervous system, whereas high doses are sedative. Sensitivity to the acute intoxicating effects of ethanol is in part under genetic control in rodents and humans, and reduced sensitivity in humans predicts the development of alcoholism (Crabbe et al., 1994; Schuckit, 1994). We have established Drosophila melanogaster as a model organism to study the mechanisms that regulate acute sensitivity to ethanol.

    METHODS: We measured the effects of ethanol vapor on Drosophila locomotor behaviors by using three different assays. Horizontal locomotion was quantified in a locomotor chamber, turning behavior was assayed in narrow tubes, and ethanol-induced loss of postural control was measured in an inebriometer. Mutants with altered sensitivity to the acute effects of ethanol were generated by treatment with ethyl methane sulfonate and isolated by selection in the inebriometer. We ascertained the effects of these mutations on ethanol pharmacokinetics by measuring ethanol levels in extracts of flies at various times during and after ethanol exposure.

    RESULTS: Among nearly 30,000 potentially mutant flies tested, we isolated 19 mutant strains with reduced and 4 strains with increased sensitivity to the acute effects of ethanol as measured in the inebriometer. Of these mutants, four showed changes in ethanol absorption. Two mutants, named barfly and tipsy to reflect their reduced and increased ethanol sensitivity in the inebriometer, respectively, were analyzed for locomotor behaviors. Both mutants exhibited ethanol-induced hyperactivity that was indistinguishable from wild type. However, barfly and tipsy displayed reduced and increased sensitivity to the sedative effects of ethanol, respectively. Finally, both mutants showed an increased rate of ethanol-induced turning behavior.

    CONCLUSIONS: The effects of acute ethanol exposure on Drosophila locomotor behaviors are remarkably similar to those described for mammals. The analysis of mutants with altered sensitivity to ethanol revealed that the genetic pathways which regulate these responses are complex and that single genes can affect hyperactivity, turning, and sedation independently.

    View Publication Page
    02/24/00 | Dopamine modulates acute responses to cocaine, nicotine and ethanol in Drosophila.
    Bainton RJ, Tsai LT, Singh CM, Moore MS, Neckameyer WS, Heberlein U
    Current Biology. 2000 Feb 24;10(4):187-94

    Drugs of abuse have a common property in mammals, which is their ability to facilitate the release of the neurotransmitter and neuromodulator dopamine in specific brain regions involved in reward and motivation. This increase in synaptic dopamine levels is believed to act as a positive reinforcer and to mediate some of the acute responses to drugs. The mechanisms by which dopamine regulates acute drug responses and addiction remain unknown.

    View Publication Page
    01/01/00 | Early retinal development in Drosophila.
    Heberlein U, Treisman JE
    Results and Problems in Cell Differentiation. 2000;31:37-50