Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

4 Publications

Showing 1-4 of 4 results
Your Criteria:
    12/01/03 | Tre1, a G protein-coupled receptor, directs transepithelial migration of Drosophila germ cells.
    Kunwar PS, Starz-Gaiano M, Bainton RJ, Heberlein U, Lehmann R
    PLoS Biology. 2003 Dec;1(3):E80. doi: 10.1371/journal.pbio.0000080

    In most organisms, germ cells are formed distant from the somatic part of the gonad and thus have to migrate along and through a variety of tissues to reach the gonad. Transepithelial migration through the posterior midgut (PMG) is the first active step during Drosophila germ cell migration. Here we report the identification of a novel G protein-coupled receptor (GPCR), Tre1, that is essential for this migration step. Maternal tre1 RNA is localized to germ cells, and tre1 is required cell autonomously in germ cells. In tre1 mutant embryos, most germ cells do not exit the PMG. The few germ cells that do leave the midgut early migrate normally to the gonad, suggesting that this gene is specifically required for transepithelial migration and that mutant germ cells are still able to recognize other guidance cues. Additionally, inhibiting small Rho GTPases in germ cells affects transepithelial migration, suggesting that Tre1 signals through Rho1. We propose that Tre1 acts in a manner similar to chemokine receptors required during transepithelial migration of leukocytes, implying an evolutionarily conserved mechanism of transepithelial migration. Recently, the chemokine receptor CXCR4 was shown to direct migration in vertebrate germ cells. Thus, germ cells may more generally use GPCR signaling to navigate the embryo toward their target.

    View Publication Page
    07/01/03 | Mechanism of hedgehog signaling during Drosophila eye development.
    Pappu KS, Chen R, Middlebrooks BW, Woo C, Heberlein U, Mardon G
    Development. 2003 Jul;130(13):3053-62

    Although Hedgehog (Hh) signaling is essential for morphogenesis of the Drosophila eye, its exact link to the network of tissue-specific genes that regulate retinal determination has remained elusive. In this report, we demonstrate that the retinal determination gene eyes absent (eya) is the crucial link between the Hedgehog signaling pathway and photoreceptor differentiation. Specifically, we show that the mechanism by which Hh signaling controls initiation of photoreceptor differentiation is to alleviate repression of eya and decapentaplegic (dpp) expression by the zinc-finger transcription factor Cubitus interruptus (Ci(rep)). Furthermore, our results suggest that stabilized, full length Ci (Ci(act)) plays little or no role in Drosophila eye development. Moreover, while the effects of Hh are primarily concentration dependent in other tissues, hh signaling in the eye acts as a binary switch to initiate retinal morphogenesis by inducing expression of the tissue-specific factor Eya.

    View Publication Page
    01/01/03 | Drosophila melanogaster, a genetic model system for alcohol research.
    Guarnieri DJ, Heberlein U
    International Review of Neurobiology. 2003;54:199-228

    In its natural environment, which consists of fermenting plant materials, the fruit fly Drosophila melanogaster encounters high levels of ethanol. Flies are well equipped to deal with the toxic effects of ethanol; they use it as an energy source and for lipid biosynthesis. The primary ethanol-metabolizing pathway in flies involves the enzymes alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH); their role in adaptation to ethanol-rich environments has been studied extensively. The similarity between Drosophila and mammals is not restricted to the manner in which they metabolize ethanol; behaviors elicited by ethanol exposure are also remarkably similar in these organisms. Flies show signs of acute intoxication, which range from locomotor stimulation at low doses to complete sedation at higher doses, they develop tolerance upon intermittent ethanol exposure, and they appear to like ethanol, showing preference for ethanol-containing media. Molecular genetic analysis of ethanol-induced behaviors in Drosophila, while still in its early stages, has already revealed some surprising parallels with mammals. The availability of powerful tools for genetic manipulation in Drosophila, together with the high degree of conservation at the genomic level, make Drosophila a promising model organism to study the mechanism by which ethanol regulates behavior and the mechanisms underlying the organism's adaptation to long-term ethanol exposure.

    View Publication Page
    01/01/03 | Invertebrate models of drug abuse.
    Wolf FW, Heberlein U
    Journal of Neurobiology. 2003 Jan;54(1):161-78. doi: 10.1002/neu.10166

    Susceptibility to drug addiction depends on genetic and environmental factors and their complex interactions. Studies with mammalian models have identified molecular targets, neurochemical systems, and brain regions that mediate some of the addictive properties of abused drugs. Yet, our understanding of how the primary effects of drugs lead to addiction remains incomplete. Recently, researchers have turned to the invertebrate model systems Drosophila melanogaster and Caenorhabditis elegans to dissect the mechanisms by which abused drugs modulate behavior. Due to their sophisticated genetics, relatively simple anatomy, and their remarkable molecular similarity to mammals, these invertebrate models should provide useful insights into the mechanisms of drug action. Here we review recent behavioral and genetic studies in flies and worms on the effects of ethanol, cocaine, and nicotine, three of the most widely abused drugs in the world.

    View Publication Page