Filter
Associated Lab
Associated Project Team
Publication Date
- 2021 (1) Apply 2021 filter
- 2020 (2) Apply 2020 filter
- 2019 (2) Apply 2019 filter
- 2018 (3) Apply 2018 filter
- 2017 (1) Apply 2017 filter
- 2015 (2) Apply 2015 filter
- 2014 (2) Apply 2014 filter
- 2013 (6) Apply 2013 filter
- 2012 (9) Apply 2012 filter
- 2011 (12) Apply 2011 filter
- 2010 (5) Apply 2010 filter
- 2009 (8) Apply 2009 filter
- 2008 (3) Apply 2008 filter
- 2007 (3) Apply 2007 filter
- 2006 (2) Apply 2006 filter
- 2005 (4) Apply 2005 filter
- 2004 (4) Apply 2004 filter
- 2003 (4) Apply 2003 filter
- 2002 (4) Apply 2002 filter
- 2001 (1) Apply 2001 filter
- 2000 (5) Apply 2000 filter
- 1999 (1) Apply 1999 filter
- 1998 (4) Apply 1998 filter
- 1997 (3) Apply 1997 filter
- 1995 (3) Apply 1995 filter
Type of Publication
94 Publications
Showing 41-50 of 94 resultsAn estimated 2 million Americans use cocaine, resulting in large personal and societal costs. Discovery of the genetic factors that contribute to cocaine abuse is important for understanding this complex disease. Previously, mutations in the Drosophila LIM-only (dLmo) gene were identified because of their increased behavioral sensitivity to cocaine. Here we show that the mammalian homolog Lmo4, which is highly expressed in brain regions implicated in drug addiction, plays a similar role in cocaine-induced behaviors. Mice with a global reduction in Lmo4 levels show increased sensitivity to the locomotor stimulatory effects of cocaine upon chronic cocaine administration. This effect is reproduced with downregulation of Lmo4 in the nucleus accumbens by RNA interference. Thus, Lmo genes play conserved roles in regulating the behavioral effects of cocaine in invertebrate and mammalian models of drug addiction.
Alcohol abuse is a pervasive problem known to be influenced by genetic factors, yet our understanding of the mechanisms underlying alcohol addiction is far from complete. Drosophila melanogaster has been established as a model for studying the molecular mechanisms that mediate the acute and chronic effects of alcohol. However, the Drosophila model has not yet been extended to include more complex alcohol-related behaviors such as self-administration. We recently established a paradigm to characterize ethanol consumption and preference in flies. We demonstrated that flies prefer to consume ethanol-containing food over regular food, and this preference exhibits several features of alcohol addiction: flies increase ethanol consumption over time, they consume ethanol to pharmacologically relevant concentrations, they will overcome an aversive stimulus in order to consume ethanol, and they exhibit relapse after a period of ethanol deprivation. Thus, ethanol preference in flies provides a new model for studying important aspects of addiction and their underlying mechanisms. One mutant that displayed decreased ethanol preference, krasavietz, may represent a first step toward uncovering those mechanisms.
There is considerable interest in the regulation of sensorimotor gating, since deficits in this process could play a critical role in the symptoms of schizophrenia and other psychiatric disorders. Sensorimotor gating is often studied in humans and rodents using the prepulse inhibition of the acoustic startle response (PPI) model, in which an acoustic prepulse suppresses behavioral output to a startle-inducing stimulus. However, the molecular and neural mechanisms underlying PPI are poorly understood. Here, we show that a regulatory pathway involving protein phosphatase 2A (PP2A), glycogen synthase kinase 3 beta (GSK3beta), and their downstream target, the M-type potassium channel, regulates PPI. Mice (Mus musculus) carrying a hypomorphic allele of Ppp2r5delta, encoding a regulatory subunit of PP2A, show attenuated PPI. This PPP2R5delta reduction increases the phosphorylation of GSK3beta at serine 9, which inactivates GSK3beta, indicating that PPP2R5delta positively regulates GSK3beta activity in the brain. Consistently, genetic and pharmacological manipulations that reduce GSK3beta function attenuate PPI. The M-type potassium channel subunit, KCNQ2, is a putative GSK3beta substrate. Genetic reduction of Kcnq2 also reduces PPI, as does systemic inhibition of M-channels with linopirdine. Importantly, both the GSK3 inhibitor 3-(2,4-dichlorophenyl)-4-(1-methyl-1H-indol-3-yl)1H-pyrrole-2,5-dione (SB216763) and linopirdine reduce PPI when directly infused into the medial prefrontal cortex (mPFC). Whole-cell electrophysiological recordings of mPFC neurons show that SB216763 and linopirdine have similar effects on firing, and GSK3 inhibition occludes the effects of M-channel inhibition. These data support a previously uncharacterized mechanism by which PP2A/GSK3beta signaling regulates M-type potassium channel activity in the mPFC to modulate sensorimotor gating.
Dopamine is a mediator of the stimulant properties of drugs of abuse, including ethanol, in mammals and in the fruit fly Drosophila. The neural substrates for the stimulant actions of ethanol in flies are not known. We show that a subset of dopamine neurons and their targets, through the action of the D1-like dopamine receptor DopR, promote locomotor activation in response to acute ethanol exposure. A bilateral pair of dopaminergic neurons in the fly brain mediates the enhanced locomotor activity induced by ethanol exposure, and promotes locomotion when directly activated. These neurons project to the central complex ellipsoid body, a structure implicated in regulating motor behaviors. Ellipsoid body neurons are required for ethanol-induced locomotor activity and they express DopR. Elimination of DopR blunts the locomotor activating effects of ethanol, and this behavior can be restored by selective expression of DopR in the ellipsoid body. These data tie the activity of defined dopamine neurons to D1-like DopR-expressing neurons to form a neural circuit that governs acute responding to ethanol.
BACKGROUND: Increased ethanol intake, a major predictor for the development of alcohol use disorders, is facilitated by the development of tolerance to both the aversive and pleasurable effects of the drug. The molecular mechanisms underlying ethanol tolerance development are complex and are not yet well understood. METHODS: To identify genetic mechanisms that contribute to ethanol tolerance, we examined the time course of gene expression changes elicited by a single sedating dose of ethanol in Drosophila, and completed a behavioral survey of strains harboring mutations in ethanol-regulated genes. RESULTS: Enrichment for genes in metabolism, nucleic acid binding, olfaction, regulation of signal transduction, and stress suggests that these biological processes are coordinately affected by ethanol exposure. We also detected a coordinate up-regulation of genes in the Toll and Imd innate immunity signal transduction pathways. A multi-study comparison revealed a small set of genes showing similar regulation, including increased expression of 3 genes for serine biosynthesis. A survey of Drosophila strains harboring mutations in ethanol-regulated genes for ethanol sensitivity and tolerance phenotypes revealed roles for serine biosynthesis, olfaction, transcriptional regulation, immunity, and metabolism. Flies harboring deletions of the genes encoding the olfactory co-receptor Or83b or the sirtuin Sir2 showed marked changes in the development of ethanol tolerance. CONCLUSIONS: Our findings implicate novel roles for these genes in regulating ethanol behavioral responses.
Alcohol addiction is a common affliction with a strong genetic component [1]. Although mammalian studies have provided significant insight into the molecular mechanisms underlying ethanol consumption [2], other organisms such as Drosophila melanogaster are better suited for unbiased, forward genetic approaches to identify novel genes. Behavioral responses to ethanol, such as hyperactivity, sedation, and tolerance, are conserved between flies and mammals [3, 4], as are the underlying molecular pathways [5-9]. However, few studies have investigated ethanol self-administration in flies [10]. Here we characterize ethanol consumption and preference in Drosophila. Flies prefer to consume ethanol-containing food over regular food, and this preference increases over time. Flies are attracted to the smell of ethanol, which partially mediates ethanol preference, but are averse to its taste. Preference for consuming ethanol is not entirely explained by attraction to either its sensory or caloric properties. We demonstrate that flies can exhibit features of alcohol addiction. First, flies self-administer ethanol to pharmacologically relevant concentrations. Second, flies will overcome an aversive stimulus in order to consume ethanol. Third, flies rapidly return to high levels of ethanol consumption after a period of imposed abstinence. Thus, ethanol preference in Drosophila provides a new model for studying aspects of addiction.
It has long been known that heavy alcohol consumption leads to neuropathology and neuronal death. While the response of neurons to an ethanol insult is strongly influenced by genetic background, the underlying mechanisms are poorly understood. Here, we show that even a single intoxicating exposure to ethanol causes non-cell-autonomous apoptotic death specifically of Drosophila olfactory neurons, which is accompanied by a loss of a behavioral response to the smell of ethanol and a blackening of the third antennal segment. The Drosophila homolog of glycogen synthase kinase-3 (GSK-3)beta, Shaggy, is required for ethanol-induced apoptosis. Consistent with this requirement, the GSK-3beta inhibitor lithium protects against the neurotoxic effects of ethanol, indicating the possibility for pharmacological intervention in cases of alcohol-induced neurodegeneration. Ethanol-induced death of olfactory neurons requires both their neural activity and functional NMDA receptors. This system will allow the investigation of the genetic and molecular basis of ethanol-induced apoptosis in general and provide an understanding of the molecular role of GSK-3beta in programmed cell death.
Considerable progress has been made over the past couple of decades concerning the molecular bases of neurobehavioral function and dysfunction. The field of neurobehavioral genetics is becoming mature. Genetic factors contributing to neurologic diseases such as Alzheimer's disease have been found and evidence for genetic factors contributing to other diseases such as schizophrenia and autism are likely. This genetic approach can also benefit the field of behavioral neurotoxicology. It is clear that there is substantial heterogeneity of response with behavioral impairments resulting from neurotoxicants. Many factors contribute to differential sensitivity, but it is likely that genetic variability plays a prominent role. Important discoveries concerning genetics and behavioral neurotoxicity are being made on a broad front from work with invertebrate and piscine mutant models to classic mouse knockout models and human epidemiologic studies of polymorphisms. Discovering genetic factors of susceptibility to neurobehavioral toxicity not only helps identify those at special risk, it also advances our understanding of the mechanisms by which toxicants impair neurobehavioral function in the larger population. This symposium organized by Edward Levin and Annette Kirshner, brought together researchers from the laboratories of Michael Aschner, Douglas Ruden, Ulrike Heberlein, Edward Levin and Kathleen Welsh-Bohmer conducting studies with Caenorhabditis elegans, Drosophila, fish, rodents and humans studies to determine the role of genetic factors in susceptibility to behavioral impairment from neurotoxic exposure.
In mammals, fat store levels are regulated by brain centers that control food intake and metabolism. A new study by Al-Anzi and colleagues in this issue of Neuron identifies neurons with similar functions in Drosophila, further establishing the fly as a legitimate model to study obesity.
In the last decade, the fruit fly Drosophila melanogaster, highly accessible to genetic, behavioral and molecular analyses, has been introduced as a novel model organism to help decipher the complex genetic, neurochemical, and neuroanatomical underpinnings of behaviors induced by drugs of abuse. Here we review these data, focusing specifically on cocaine-related behaviors. Several of cocaine's most characteristic properties have been recapitulated in Drosophila. First, cocaine induces motor behaviors in flies that are remarkably similar to those observed in mammals. Second, repeated cocaine administration induces behavioral sensitization a form of behavioral plasticity believed to underlie certain aspects of addiction. Third, a key role for dopaminergic systems in mediating cocaine's effects has been demonstrated through both pharmacological and genetic methods. Finally, and most importantly, unbiased genetic screens, feasible because of the simplicity and scale with which flies can be manipulated in the laboratory, have identified several novel genes and pathways whose role in cocaine behaviors had not been anticipated. Many of these genes and pathways have been validated in mammalian models of drug addiction. We focus in this review on the role of LIM-only proteins in cocaine-induced behaviors.