Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

4 Publications

Showing 1-4 of 4 results
Your Criteria:
    11/01/11 | A computational statistics approach for estimating the spatial range of morphogen gradients.
    Kanodia JS, Kim Y, Tomer R, Khan Z, Chung K, Storey JD, Lu H, Keller PJ, Shvartsman SY
    Development. 2011 Nov;138(22):4867-74. doi: 10.1242/dev.071571

    A crucial issue in studies of morphogen gradients relates to their range: the distance over which they can act as direct regulators of cell signaling, gene expression and cell differentiation. To address this, we present a straightforward statistical framework that can be used in multiple developmental systems. We illustrate the developed approach by providing a point estimate and confidence interval for the spatial range of the graded distribution of nuclear Dorsal, a transcription factor that controls the dorsoventral pattern of the Drosophila embryo.

    View Publication Page
    10/01/11 | Digital scanned laser light sheet fluorescence microscopy.
    Keller PJ, Stelzer EH
    Cold Spring Harbor Protocols. 2011 Oct;2010(10):pdb.top78. doi: 10.1101/pdb.top78

    Modern applications in the life sciences are frequently based on in vivo imaging of biological specimens, a domain for which light microscopy approaches are typically best suited. Often, quantitative information must be obtained from large multicellular organisms at the cellular or even subcellular level and with a good temporal resolution. However, this usually requires a combination of conflicting features: high imaging speed, low photobleaching and low phototoxicity in the specimen, good three-dimensional (3D) resolution, an excellent signal-to-noise ratio, and multiple-view imaging capability. The latter feature refers to the capability of recording a specimen along multiple directions, which is crucial for the imaging of large specimens with strong light-scattering or light-absorbing tissue properties. An imaging technique that fulfills these requirements is essential for many key applications: For example, studying fast cellular processes over long periods of time, imaging entire embryos throughout development, or reconstructing the formation of morphological defects in mutants. Here, we discuss digital scanned laser light sheet fluorescence microscopy (DSLM) as a novel tool for quantitative in vivo imaging in the post-genomic era and show how this emerging technique relates to the currently most widely applied 3D microscopy techniques in biology: confocal fluorescence microscopy and two-photon microscopy.

    View Publication Page
    10/01/11 | Digital scanned laser light-sheet fluorescence microscopy (DSLM) of zebrafish and Drosophila embryonic development.
    Keller PJ, Schmidt AD, Wittbrodt J, Stelzer EH
    Cold Spring Harbor Protocols. 2011 Oct;2011(10):1235-43. doi: 10.1101/pdb.prot065839

    Embryonic development is one of the most complex processes encountered in biology. In vertebrates and higher invertebrates, a single cell transforms into a fully functional organism comprising several tens of thousands of cells, arranged in tissues and organs that perform impressive tasks. In vivo observation of this biological process at high spatiotemporal resolution and over long periods of time is crucial for quantitative developmental biology. Importantly, such recordings must be realized without compromising the physiological development of the specimen. In digital scanned laser light-sheet fluorescence microscopy (DSLM), a specimen is rapidly scanned with a thin sheet of light while fluorescence is recorded perpendicular to the axis of illumination with a camera. Combining light-sheet technology and fast laser scanning, DSLM delivers quantitative data for entire embryos at high spatiotemporal resolution. Compared with confocal and two-photon fluorescence microscopy, DSLM exposes the embryo to at least three orders of magnitude less light energy, but still provides up to 50 times faster imaging speeds and a 10–100-fold higher signal-to-noise ratio. By using automated image processing algorithms, DSLM images of embryogenesis can be converted into a digital representation. These digital embryos permit following cells as a function of time, revealing cell fate as well as cell origin. By means of such analyses, developmental building plans of tissues and organs can be determined in a whole-embryo context. This article presents a sample preparation and imaging protocol for studying the development of whole zebrafish and Drosophila embryos using DSLM.

    View Publication Page
    08/01/11 | Shedding light on the system: studying embryonic development with light sheet microscopy.
    Tomer R, Khairy K, Keller PJ
    Current Opinion in Genetics and Development. 2011 Aug;21(5):558-65. doi: 10.1016/j.gde.2011.07.003

    Light sheet-based fluorescence microscopy (LSFM) is emerging as a powerful imaging technique for the life sciences. LSFM provides an exceptionally high imaging speed, high signal-to-noise ratio, low level of photo-bleaching and good optical penetration depth. This unique combination of capabilities makes light sheet-based microscopes highly suitable for live imaging applications. There is an outstanding potential in applying this technology to the quantitative study of embryonic development. Here, we provide an overview of the different basic implementations of LSFM, review recent technical advances in the field and highlight applications in the context of embryonic development. We conclude with a discussion of promising future directions.

    View Publication Page