Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom


facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

117 Publications

Showing 111-117 of 117 results
Your Criteria:
    03/20/08 | Bright ideas for chemical biology.
    Lavis LD, Raines RT
    ACS Chemical Biology. 2008 Mar 20;3:142-55. doi: 10.1021/cb700248m

    Small-molecule fluorescent probes embody an essential facet of chemical biology. Although numerous compounds are known, the ensemble of fluorescent probes is based on a modest collection of modular "core" dyes. The elaboration of these dyes with diverse chemical moieties is enabling the precise interrogation of biochemical and biological systems. The importance of fluorescence-based technologies in chemical biology elicits a necessity to understand the major classes of small-molecule fluorophores. Here, we examine the chemical and photophysical properties of oft-used fluorophores and highlight classic and contemporary examples in which utility has been built upon these scaffolds.

    View Publication Page
    01/31/08 | Trimethyl lock: a stable chromogenic substrate for esterases.
    Levine MN, Lavis LD, Raines RT
    Molecules. 2008 Jan 31;13(2):204-11

    p-Nitrophenyl acetate is the most commonly used substrate for detecting the catalytic activity of esterases, including those that activate prodrugs in human cells. This substrate is unstable in aqueous solution, limiting its utility. Here, a stable chromogenic substrate for esterases is produced by the structural isolation of an acetyl ester and p-nitroaniline group using a trimethyl lock moiety. Upon ester hydrolysis, unfavorable steric interactions between the three methyl groups of this o-hydroxycinnamic acid derivative encourage rapid lactonization to form a hydrocoumarin and release p-nitroaniline. This "prochromophore" could find use in a variety of assays.

    View Publication Page
    11/13/07 | Intraspecies regulation of ribonucleolytic activity.
    Johnson RJ, Lavis LD, Raines RT
    Biochemistry. 2007 Nov 13;46:13131-40. doi: 10.1021/bi701521q

    The evolutionary rate of proteins involved in obligate protein-protein interactions is slower and the degree of coevolution higher than that for nonobligate protein-protein interactions. The coevolution of the proteins involved in certain nonobligate interactions is, however, essential to cell survival. To gain insight into the coevolution of one such nonobligate protein pair, the cytosolic ribonuclease inhibitor (RI) proteins and secretory pancreatic-type ribonucleases from cow (Bos taurus) and human (Homo sapiens) were produced in Escherichia coli and purified, and their physicochemical properties were analyzed. The two intraspecies complexes were found to be extremely tight (bovine Kd = 0.69 fM; human Kd = 0.34 fM). Human RI binds to its cognate ribonuclease (RNase 1) with 100-fold greater affinity than to the bovine homologue (RNase A). In contrast, bovine RI binds to RNase 1 and RNase A with nearly equal affinity. This broader specificity is consistent with there being more pancreatic-type ribonucleases in cows (20) than humans (13). Human RI (32 cysteine residues) also has 4-fold less resistance to oxidation by hydrogen peroxide than does bovine RI (29 cysteine residues). This decreased oxidative stability of human RI, which is caused largely by Cys74, implies a larger role for human RI as an antioxidant. The conformational and oxidative stabilities of both RIs increase upon complex formation with ribonucleases. Thus, RI has evolved to maintain its inhibition of invading ribonucleases, even when confronted with extreme environmental stress. That role appears to take precedence over its role in mediating oxidative damage.

    View Publication Page
    09/11/07 | Cytotoxic ribonucleases: the dichotomy of Coulombic forces.
    Johnson RJ, Chao T, Lavis LD, Raines RT
    Biochemistry. 2007 Sep 11;46(36):10308-16. doi: 10.1021/bi700857u

    Cells tightly regulate their contents. Still, nonspecific Coulombic interactions between cationic molecules and anionic membrane components can lead to adventitious endocytosis. Here, we characterize this process in a natural system. To do so, we create variants of human pancreatic ribonuclease (RNase 1) that differ in net molecular charge. By conjugating a small-molecule latent fluorophore to these variants and using flow cytometry, we are able to determine the kinetic mechanism for RNase 1 internalization into live human cells. We find that internalization increases with solution concentration and is not saturable. Internalization also increases with time to a steady-state level, which varies linearly with molecular charge. In contrast, the rate constant for internalization (t1/2 = 2 h) is independent of charge. We conclude that internalization involves an extracellular equilibrium complex between the cationic proteins and abundant anionic cell-surface molecules, followed by rate-limiting internalization. The enhanced internalization of more cationic variants of RNase 1 is, however, countered by their increased affinity for the cytosolic ribonuclease inhibitor protein, which is anionic. Thus, Coulombic forces mediate extracellular and intracellular equilibria in a dichotomous manner that both endangers cells and defends them from the potentially lethal enzymatic activity of ribonucleases.

    View Publication Page
    09/01/07 | Tuning the pK(a) of fluorescein to optimize binding assays.
    Lavis LD, Rutkoski TJ, Raines RT
    Analytical Chemistry. 2007 Sep 1;79(17):6775-82. doi: 10.1021/ac070907g

    The phenolic pKa of fluorescein varies depending on its environment. The fluorescence of the dye varies likewise. Accordingly, a change in fluorescence can report on the association of a fluorescein conjugate to another molecule. Here, we demonstrate how to optimize this process with chemical synthesis. The fluorescence of fluorescein-labeled model protein, bovine pancreatic ribonuclease (RNase A), decreases upon binding to its cognate inhibitor protein (RI). Free and RI-bound fluorescein-RNase A have pKa values of 6.35 and 6.70, respectively, leaving the fluorescein moiety largely unprotonated at physiological pH and thus limiting the sensitivity of the assay. To increase the fluorescein pKa and, hence, the assay sensitivity, we installed an electron-donating alkyl group ortho to each phenol group. 2’,7’-Diethylfluorescein (DEF) has spectral properties similar to those of fluorescein but a higher phenolic pKa. Most importantly, free and RI-bound DEF-RNase A have pKa values of 6.68 and 7.29, respectively, resulting in a substantial increase in the sensitivity of the assay. Using DEF-RNase A rather than fluorescein-RNase A in a microplate assay at pH 7.12 increased the Z’-factor from -0.17 to 0.69. We propose that synthetic "tuning" of the pKa of fluorescein and other pH-sensitive fluorophores provides a general means to optimize binding assays.

    View Publication Page
    08/01/06 | Latent blue and red fluorophores based on the trimethyl lock.
    Lavis LD, Chao T, Raines RT
    Chembiochem: A European Journal of Chemical Biology. 2006 Aug;7(8):1151-4. doi: 10.1002/cbic.200500559
    05/23/06 | Fluorogenic label for biomolecular imaging.
    Lavis LD, Chao T, Raines RT
    ACS Chemical Biology. 2006 May 23;1(4):252-60. doi: 10.1021/cb600132m

    Traditional small-molecule fluorophores are always fluorescent. This attribute can obscure valuable information in biological experiments. Here, we report on a versatile "latent" fluorophore that overcomes this limitation. At the core of the latent fluorophore is a derivative of rhodamine in which one nitrogen is modified as a urea. That modification enables rhodamine to retain half of its fluorescence while facilitating conjugation to a target molecule. The other nitrogen of rhodamine is modified with a "trimethyl lock", which enables fluorescence to be unmasked fully by a single user-designated chemical reaction. An esterase-reactive latent fluorophore was synthesized in high yield and attached covalently to a cationic protein. The resulting conjugate was not fluorescent in the absence of esterases. The enzymatic activity of esterases in endocytic vesicles and the cytosol educed fluorescence, enabling the time-lapse imaging of endocytosis into live human cells and thus providing unprecedented spatiotemporal resolution of this process. The modular design of this "fluorogenic label" enables the facile synthesis of an ensemble of small-molecule probes for the illumination of numerous biochemical and cell biological processes.

    View Publication Page