Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

1 Publications

Showing 1-1 of 1 results
Your Criteria:
    Murphy Lab
    03/01/08 | Signals and noise in an inhibitory interneuron diverge to control activity in nearby retinal ganglion cells.
    Murphy GJ, Rieke F
    Nature Neuroscience. 2008 Mar;11(3):318-26. doi: 10.1038/nn2045

    Information about sensory stimuli is represented by spatiotemporal patterns of neural activity. The complexity of the central nervous system, however, frequently obscures the origin and properties of signals and noise that underlie these activity patterns. We minimized this constraint by examining mechanisms governing correlated activity in mouse retinal ganglion cells (RGCs) under conditions in which light-evoked responses traverse a specific circuit, the rod bipolar pathway. Signals and noise in this circuit produced correlated synaptic input to neighboring On and Off RGCs. Temporal modulation of light intensity did not alter the degree to which noise in the input to nearby RGCs was correlated, and action potential generation in individual RGCs was largely insensitive to differences in network noise generated by dynamic and static light stimuli. Together, these features enable noise in shared circuitry to diminish simultaneous action potential generation in neighboring On and Off RGCs under a variety of conditions.

    View Publication Page