Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
general_search_page-panel_pane_1 | views_panes

5 Publications

Showing 1-5 of 5 results
Your Criteria:
    Riddiford Lab
    12/15/08 | Insulin/IGF signaling regulates the change in commitment in imaginal discs and primordia by overriding the effect of juvenile hormone.
    Koyama T, Syropyatova MO, Riddiford LM
    Developmental Biology. 2008 Dec 15;324(2):258-65. doi: 10.1016/j.ydbio.2008.09.017

    At the beginning of the final larval (fifth) instar of Manduca sexta, imaginal precursors including wing discs and eye primordia initiate metamorphic changes, such as pupal commitment, patterning and cell proliferation. Juvenile hormone (JH) prevents these changes in earlier instars and in starved final instar larvae, but nutrient intake overcomes this effect of JH in the latter. In this study, we show that a molecular marker of pupal commitment, broad, is up-regulated in the wing discs by feeding on sucrose or by bovine insulin or Manduca bombyxin in starved final instar larvae. This effect of insulin could not be prevented by JH. In vitro insulin had no effect on broad expression but relieved the suppression of broad expression by JH. This effect of insulin was directly on the disc as shown by its reduction in the presence of insulin receptor dsRNA. In starved penultimate fourth instar larvae, broad expression in the wing disc was not up-regulated by insulin. The discs became responsive to this action of insulin during the molt to the fifth instar together with the ability to become pupally committed in response to 20-hydroxyecdysone. Thus, the Manduca bombyxin acts as a metamorphosis-initiating factor in the imaginal precursors.

    View Publication Page
    Truman LabRiddiford Lab
    08/22/08 | Developmental model of static allometry in holometabolous insects.
    Shingleton AW, Mirth CK, Bates PW
    Proceedings of the Royal Society B: Biological Sciences. 2008 Aug 22;275(1645):1875-85. doi: 10.1098/rspb.2008.0227

    The regulation of static allometry is a fundamental developmental process, yet little is understood of the mechanisms that ensure organs scale correctly across a range of body sizes. Recent studies have revealed the physiological and genetic mechanisms that control nutritional variation in the final body and organ size in holometabolous insects. The implications these mechanisms have for the regulation of static allometry is, however, unknown. Here, we formulate a mathematical description of the nutritional control of body and organ size in Drosophila melanogaster and use it to explore how the developmental regulators of size influence static allometry. The model suggests that the slope of nutritional static allometries, the ’allometric coefficient’, is controlled by the relative sensitivity of an organ’s growth rate to changes in nutrition, and the relative duration of development when nutrition affects an organ’s final size. The model also predicts that, in order to maintain correct scaling, sensitivity to changes in nutrition varies among organs, and within organs through time. We present experimental data that support these predictions. By revealing how specific physiological and genetic regulators of size influence allometry, the model serves to identify developmental processes upon which evolution may act to alter scaling relationships.

    View Publication Page
    Riddiford Lab
    06/01/08 | Juvenile hormone action: a 2007 perspective.
    Riddiford LM
    Journal of Insect Physiology. 2008 Jun;54(6):895-901. doi: 10.1016/j.jinsphys.2008.01.014

    Juvenile hormone (JH) is a key hormone in regulation of the insect’s life history, both in maintaining the larval state during molts and in directing reproductive maturation. This short review highlights the recent papers of the past year that lend new insight into the role of this hormone in the larva and the mechanisms whereby it achieves this role.

    View Publication Page
    Truman LabRiddiford Lab
    02/01/08 | The role of Broad in the development of Tribolium castaneum: implications for the evolution of the holometabolous insect pupa.
    Suzuki Y, Truman JW, Riddiford LM
    Development (Cambridge, England). 2008 Feb;135(3):569-77. doi: 10.1242/dev.015263

    The evolution of complete metamorphosis in insects is a key innovation that has led to the successful diversification of holometabolous insects, yet the origin of the pupa remains an enigma. Here, we analyzed the expression of the pupal specifier gene broad (br), and the effect on br of isoform-specific, double-stranded RNA-mediated silencing, in a basal holometabolous insect, the beetle Tribolium castaneum. All five isoforms are weakly expressed during the penultimate instar and highly expressed during the prepupal period of the final instar. Application of hydroprene, a juvenile hormone analog, during the penultimate instar caused a repeat of the penultimate br expression patterns, and the formation of supernumerary larvae. Use of dsRNA against the br core region, or against a pair of either the br-Z2 or br-Z3 isoform with the br-Z1 or br-Z4 isoform, produced mobile animals with well-differentiated adult-like appendages, but which retained larval-like urogomphi and epidermis. Disruption of either the br-Z2 or the br-Z3 isoform caused the formation of shorter wings. Disruption of both br-Z1 and br-Z4 caused the appearance of pupal traits in the adults, but disruption of br-Z5 had no morphological effect. Our findings show that the br isoform functions are broadly conserved within the Holometabola and suggest that evolution of br isoform expression may have played an important role in the evolution of the pupa in holometabolous insects.

    View Publication Page
    Riddiford Lab
    01/01/08 | Krüppel homolog 1 (Kr-h1) mediates juvenile hormone action during metamorphosis of Drosophila melanogaster.
    Minakuchi C, Zhou X, Riddiford LM
    Mechanisms of Development. 2008 Jan-Feb;125:91-105. doi: 10.1016/j.mod.2007.10.002

    Juvenile hormone (JH) given at pupariation inhibits bristle formation and causes pupal cuticle formation in the abdomen of Drosophila melanogaster due to its prolongation of expression of the transcription factor Broad (BR). In a microarray analysis of JH-induced gene expression in abdominal integument, we found that Krüppel homolog 1 (Kr-h1) was up-regulated during most of adult development. Quantitative real-time PCR analyses showed that Kr-h1 up-regulation began at 10h after puparium formation (APF), and Kr-h1 up-regulation occurred in imaginal epidermal cells, persisting larval muscles, and larval oenocytes. Ectopic expression of Kr-h1 in abdominal epidermis using T155-Gal4 to drive UAS-Kr-h1 resulted in missing or short bristles in the dorsal midline. This phenotype was similar to that seen after a low dose of JH or after misexpression of br between 21 and 30 h APF. Ectopic expression of Kr-h1 prolonged the expression of BR protein in the pleura and the dorsal tergite. No Kr-h1 was seen after misexpression of br. Thus, Kr-h1 mediates some of the JH signaling in the adult abdominal epidermis and is upstream of br in this pathway. We also show for the first time that the JH-mediated maintenance of br expression in this epidermis is patterned and that JH delays the fusion of the imaginal cells and the disappearance of Dpp in the dorsal midline.

    View Publication Page