Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

9 Publications

Showing 1-9 of 9 results
Your Criteria:
    12/01/07 | Internal and external constraints in the evolution of morphological allometries in a butterfly.
    Frankino WA, Zwaan BJ, Stern DL, Brakefield PM
    Evolution. 2007 Dec;61(12):2958-70. doi: 10.1111/j.1558-5646.2007.00249.x

    Much diversity in animal morphology results from variation in the relative size of morphological traits. The scaling relationships, or allometries, that describe relative trait size can vary greatly in both intercept and slope among species or other animal groups. Yet within such groups, individuals typically exhibit low variation in relative trait size. This pattern of high intra- and low intergroup variation may result from natural selection for particular allometries, from developmental constraints restricting differential growth among traits, or both. Here we explore the relative roles of short-term developmental constraints and natural selection in the evolution of the intercept of the allometry between the forewing and hindwing of a butterfly. First, despite a strong genetic correlation between these two traits, we show that artificial selection perpendicular to the forewing-hindwing scaling relationship results in rapid evolution of the allometry intercept. This demonstrates an absence of developmental constraints limiting intercept evolution for this scaling relationship. Mating experiments in a natural environment revealed strong stabilizing selection favoring males with the wild-type allometry intercept over those with derived intercepts. Our results demonstrate that evolution of this component of the forewing-hindwing allometry is not limited by developmental constraints in the short term and that natural selection on allometry intercepts can be powerful.

    View Publication Page
    08/15/07 | The function and regulation of Ultrabithorax in the legs of Drosophila melanogaster.
    Davis GK, Srinivasan DG, Wittkopp PJ, Stern DL
    Dev Biol. 2007 Aug 15;308(2):621-31. doi: 10.1016/j.ydbio.2007.06.002

    Alterations in Hox gene expression patterns have been implicated in both large and small-scale morphological evolution. An improved understanding of these changes requires a detailed understanding of Hox gene cis-regulatory function and evolution. cis-regulatory evolution of the Hox gene Ultrabithorax (Ubx) has been shown to contribute to evolution of trichome patterns on the posterior second femur (T2p) of Drosophila species. As a step toward determining how this function of Ubx has evolved, we performed a series of experiments to clarify the role of Ubx in patterning femurs and to identify the cis-regulatory regions of Ubx that drive expression in T2p. We first performed clonal analysis to further define Ubx function in patterning bristle and trichome patterns in the legs. We found that low levels of Ubx expression are sufficient to repress an eighth bristle row on the posterior second and third femurs, whereas higher levels of expression are required to promote the development and migration of other bristles on the third femur and to repress trichomes. We then tested the hypothesis that the evolutionary difference in T2p trichome patterns due to Ubx was caused by a change in the global cis-regulation of Ubx expression. We found no evidence to support this view, suggesting that the evolved difference in Ubx function reflects evolution of a leg-specific enhancer. We then searched for the regulatory regions of the Ubx locus that drive expression in the second and third femur by assaying all existing regulatory mutations of the Ubx locus and new deficiencies in the large intron of Ubx that we generated by P-element-induced male recombination. We found that two enhancer regions previously known to regulate Ubx expression in the legs, abx and pbx, are required for Ubx expression in the third femur, but that they do not contribute to pupal expression of Ubx in the second femur. This analysis allowed us to rule out at least 100 kb of DNA in and around the Ubx locus as containing a T2p-specific enhancer. We then surveyed an additional approximately 30 kb using enhancer constructs. None of these enhancer constructs produced an expression pattern similar to Ubx expression in T2p. Thus, after surveying over 95% of the Ubx locus, we have not been able to localize a T2p-specific enhancer. While the enhancer could reside within the small regions we have not surveyed, it is also possible that the enhancer is structurally complex and/or acts only within its native genomic context.

    View Publication Page
    08/10/07 | Evolution. An embarrassment of switches.
    Kruglyak L, Stern DL
    Science. 2007 Aug 10;317(5839):758-9. doi: 10.1126/science.1146921
    08/02/07 | Morphological evolution through multiple cis-regulatory mutations at a single gene.
    McGregor AP, Orgogozo V, Delon I, Zanet J, Srinivasan DG, Payre Fc, Stern DL
    Nature. 2007 Aug 2;448(7153):587-90. doi: 10.1038/nature05988

    One central, and yet unsolved, question in evolutionary biology is the relationship between the genetic variants segregating within species and the causes of morphological differences between species. The classic neo-darwinian view postulates that species differences result from the accumulation of small-effect changes at multiple loci. However, many examples support the possible role of larger abrupt changes in the expression of developmental genes in morphological evolution. Although this evidence might be considered a challenge to a neo-darwinian micromutationist view of evolution, there are currently few examples of the actual genes causing morphological differences between species. Here we examine the genetic basis of a trichome pattern difference between Drosophila species, previously shown to result from the evolution of a single gene, shavenbaby (svb), probably through cis-regulatory changes. We first identified three distinct svb enhancers from D. melanogaster driving reporter gene expression in partly overlapping patterns that together recapitulate endogenous svb expression. All three homologous enhancers from D. sechellia drive expression in modified patterns, in a direction consistent with the evolved svb expression pattern. To test the influence of these enhancers on the actual phenotypic difference, we conducted interspecific genetic mapping at a resolution sufficient to recover multiple intragenic recombinants. This functional analysis revealed that independent genetic regions upstream of svb that overlap the three identified enhancers are collectively required to generate the D. sechellia trichome pattern. Our results demonstrate that the accumulation of multiple small-effect changes at a single locus underlies the evolution of a morphological difference between species. These data support the view that alleles of large effect that distinguish species may sometimes reflect the accumulation of multiple mutations of small effect at select genes.

    View Publication Page
    07/01/07 | Common genome-wide patterns of transcript accumulation underlying the wing polyphenism and polymorphism in the pea aphid (Acyrthosiphon pisum).
    Brisson JA, Davis GK, Stern DL
    Evol Dev. 2007 Jul-Aug;9(4):338-46. doi: 10.1111/j.1525-142X.2007.00170.x

    The pea aphid, Acyrthosiphon pisum, exhibits several environmentally cued polyphenisms, in which discrete, alternative phenotypes are produced. At low-density, parthenogenetic females produce unwinged female progeny, but at high-density females produce progeny that develop with wings. These alternative phenotypes represent a solution to the competing demands of dispersal and reproduction. Males also develop as either winged or unwinged, but these alternatives are determined by a genetic polymorphism. Winged and unwinged males are morphologically less distinct from each other than winged and unwinged females, possibly because males experience fewer trade-offs between dispersal and reproduction. To assess whether shared physiological differences mirror the shared morphological differences that characterize the wing polyphenism and polymorphism, we used a cDNA microarray representing an estimated 10% of the coding genome (1734 genes) to examine differential transcript accumulation between winged and unwinged females and males. We identified several transcripts that differentially accumulate between winged and unwinged morphs in both sexes, the majority of which are involved in energy production. Unexpectedly, the extent of differential transcript accumulation between winged and unwinged morphs was greater for adult males than for adult females. Together, these results suggest not only that similar physiological differences underlie the polyphenism and polymorphism, but that male morphs, like females, are subject to trade-offs between reproduction and dispersal that are reflected in levels of transcript accumulation and possibly genome-wide patterns of gene regulation. These data also provide a baseline for future studies of the molecular and physiological basis of life-history trade-offs.

    View Publication Page
    07/01/07 | Variation in fiber number of a male-specific muscle between Drosophila species: a genetic and developmental analysis.
    Orgogozo V, Muro NM, Stern DL
    Evol Dev. 2007 Jul-Aug;9(4):368-77. doi: 10.1111/j.1525-142X.2007.00174.x

    We characterize a newly discovered morphological difference between species of the Drosophila melanogaster subgroup. The muscle of Lawrence (MOL) contains about four to five fibers in D. melanogaster and Drosophila simulans and six to seven fibers in Drosophila mauritiana and Drosophila sechellia. The same number of nuclei per fiber is present in these species but their total number of MOL nuclei differs. This suggests that the number of muscle precursor cells has changed during evolution. Our comparison of MOL development indicates that the species difference appears during metamorphosis. We mapped the quantitative trait loci responsible for the change in muscle fiber number between D. sechellia and D. simulans to two genomic regions on chromosome 2. Our data eliminate the possibility of evolving mutations in the fruitless gene and suggest that a change in the twist might be partly responsible for this evolutionary change.

    View Publication Page
    01/01/07 | Gene expression patterns underlying wing polyphenism and polymorphism in the pea aphid
    GK Davis , JA Brisson , DL Stern
    Society for Integrative and Comparative Biology. 01/2007;46:E186-E186

    The pea aphid, Acyrthosiphon pisum, exhibits several environmentally cued, discrete, alternate phenotypes (polyphenisms) during its life cycle. In the wing polyphenism, female progeny develop as either winged or unwinged depending on the extent of crowding or host plant quality experienced by the mother. Males also have the ability to develop as either winged or unwinged, but this is genetically determined by a single locus on the X chromosome and is thus referred to as a wing polymorphism. In order to gain insight into the patterns of gene expression that underlie the wing polyphenism and polymorphism we have used a pea aphid cDNA microarray to examine gene expression in winged and unwinged females and males. Results suggest that winged and unwinged morphs exhibit systemic differences in gene expression and that many of these differences are shared between the wing polyphenism and polymorphism (i.e., between females and males). In addition, adult winged and unwinged males exhibit pronounced differences when compared to adult females and fourth instar males, as well as to each other.

    View Publication Page
    01/01/07 | Sex and death in the male pea aphid, Acyrthosiphon pisum: The life-history effects of a wing dimorphism.
    Sack C, Stern DL
    J Insect Sci. 2007;7:1-9. doi: 10.1673/031.007.4501

    Insect dispersal dimorphisms, in which both flight-capable and flightless individuals occur in the same species, are thought to reflect a balance between the benefits and costs of dispersal. Fitness costs and benefits associated with wing dimorphism were investigated in the male pea aphid, Acyrthosiphon pisum (Harris) (Hemiptera: Aphididae). In one-on-one mating competitions in small arenas between winged and wingless males, the winged aphids obtained most of the matings with virgin females. In contrast, during competition experiments in larger cages with multiple individuals of each morph, the winged males no longer had a clear mating advantage over wingless males. In the absence of competition, wingless males had marginally higher lifetime reproductive success than winged males, probably because mating winged males tended to die faster than wingless males. In the absence of females, winged males survived longer than wingless males and this difference disappeared under starvation conditions. Mating males of both morphs died significantly faster than males without access to females. There does not appear to be a direct tradeoff of dispersal ability with life history characteristics in pea aphid males, suggesting that the advantages of producing winged males may result from outbreeding.

    View Publication Page
    01/01/07 | The developmental genetics of microevolution.
    Stern DL
    Novartis Found Symp. 2007;284:191-200; discussion 200-6

    What is the relationship between variation that segregates within natural populations and the differences that distinguish species? Many studies over the past century have demonstrated that most of the genetic variation within natural populations that contributes to quantitative traits causes relatively small phenotypic effects. In contrast, the genetic causes of quantitative differences between species are at least sometimes caused by few loci of relatively large effect. In addition, most of the results from evolutionary developmental biology are often discussed as though changes at just a few important 'molecular toolbox' genes provide the key clues to morphological evolution. On the face of it, these divergent results seem incompatible and call into question the neo-Darwinian view that differences between species emerge from precisely the same kinds of variants that segregate much of the time in natural populations. One prediction from the classical model is that many different genes can evolve to generate similar phenotypes. I discuss our studies that demonstrate that similar phenotypes have evolved in multiple lineages of Drosophila by evolution of the same gene, shavenbaby/ovo. This evidence for parallel evolution suggests that svb occupies a privileged position in the developmental network patterning larval trichomes that makes it a favourable target of evolutionary change.

    View Publication Page