Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

135 Publications

Showing 1-10 of 135 results
Your Criteria:
    Darshan LabSvoboda Lab
    11/26/23 | Connectivity underlying motor cortex activity during naturalistic goal-directed behavior.
    Arseny Finkelstein , Kayvon Daie , Márton Rózsa , Ran Darshan , Karel Svoboda
    bioRxiv. 2023 Nov 26:. doi: 10.1101/2023.11.25.568673

    Neural representations of information are shaped by local network interactions. Previous studies linking neural coding and cortical connectivity focused on stimulus selectivity in the sensory cortex 14. Here we study neural activity in the motor cortex during naturalistic behavior in which mice gathered rewards with multidirectional tongue reaching. This behavior does not require training and thus allowed us to probe neural coding and connectivity in motor cortex before its activity is shaped by learning a specific task. Neurons typically responded during and after reaching movements and exhibited conjunctive tuning to target location and reward outcome. We used an all-optical 5,4,6,7 method for large-scale causal functional connectivity mapping in vivo. Mapping connectivity between > 20,000,000 excitatory neuronal pairs revealed fine-scale columnar architecture in layer 2/3 of the motor cortex. Neurons displayed local (< 100 µm) like-to-like connectivity according to target-location tuning, and inhibition over longer spatial scales. Connectivity patterns comprised a continuum, with abundant weakly connected neurons and sparse strongly connected neurons that function as network hubs. Hub neurons were weakly tuned to target-location and reward-outcome but strongly influenced neighboring neurons. This network of neurons, encoding location and outcome of movements to different motor goals, may be a general substrate for rapid learning of complex, goal-directed behaviors.

    View Publication Page
    Svoboda LabDarshan Lab
    05/18/23 | Distributing task-related neural activity across a cortical network through task-independent connections.
    Kim CM, Finkelstein A, Chow CC, Svoboda K, Darshan R
    Nature Communications. 2023 May 18;14(1):2851. doi: 10.1038/s41467-023-38529-y

    Task-related neural activity is widespread across populations of neurons during goal-directed behaviors. However, little is known about the synaptic reorganization and circuit mechanisms that lead to broad activity changes. Here we trained a subset of neurons in a spiking network with strong synaptic interactions to reproduce the activity of neurons in the motor cortex during a decision-making task. Task-related activity, resembling the neural data, emerged across the network, even in the untrained neurons. Analysis of trained networks showed that strong untrained synapses, which were independent of the task and determined the dynamical state of the network, mediated the spread of task-related activity. Optogenetic perturbations suggest that the motor cortex is strongly-coupled, supporting the applicability of the mechanism to cortical networks. Our results reveal a cortical mechanism that facilitates distributed representations of task-variables by spreading the activity from a subset of plastic neurons to the entire network through task-independent strong synapses.

    View Publication Page
    05/17/23 | Sensitivity optimization of a rhodopsin-based fluorescent voltage indicator
    Abdelfattah AS, Zheng J, Singh A, Huang Y, Reep D, Tsegaye G, Tsang A, Arthur BJ, Rehorova M, Olson CV, Shuai Y, Zhang L, Fu T, Milkie DE, Moya MV, Weber TD, Lemire AL, Baker CA, Falco N, Zheng Q, Grimm JB, Yip MC, Walpita D, Chase M, Campagnola L, Murphy GJ, Wong AM, Forest CR, Mertz J, Economo MN, Turner GC, Koyama M, Lin B, Betzig E, Novak O, Lavis LD, Svoboda K, Korff W, Chen T, Schreiter ER, Hasseman JP, Kolb I
    Neuron. 2023 May 17;111(10):1547-1563. doi: 10.1016/j.neuron.2023.03.009

    The ability to optically image cellular transmembrane voltages at millisecond-timescale resolutions can offer unprecedented insight into the function of living brains in behaving animals. Here, we present a point mutation that increases the sensitivity of Ace2 opsin-based voltage indicators. We use the mutation to develop Voltron2, an improved chemigeneic voltage indicator that has a 65% higher sensitivity to single APs and 3-fold higher sensitivity to subthreshold potentials than Voltron. Voltron2 retained the sub-millisecond kinetics and photostability of its predecessor, although with lower baseline fluorescence. In multiple in vitro and in vivo comparisons with its predecessor across multiple species, we found Voltron2 to be more sensitive to APs and subthreshold fluctuations. Finally, we used Voltron2 to study and evaluate the possible mechanisms of interneuron synchronization in the mouse hippocampus. Overall, we have discovered a generalizable mutation that significantly increases the sensitivity of Ace2 rhodopsin-based sensors, improving their voltage reporting capability.

    View Publication Page
    Svoboda Lab
    04/12/23 | Predictive and robust gene selection for spatial transcriptomics.
    Covert I, Gala R, Wang T, Svoboda K, Sümbül U, Lee S
    Nature Communications. 2023 Apr 12;14(1):2091. doi: 10.1038/s41467-023-37392-1

    A prominent trend in single-cell transcriptomics is providing spatial context alongside a characterization of each cell's molecular state. This typically requires targeting an a priori selection of genes, often covering less than 1% of the genome, and a key question is how to optimally determine the small gene panel. We address this challenge by introducing a flexible deep learning framework, PERSIST, to identify informative gene targets for spatial transcriptomics studies by leveraging reference scRNA-seq data. Using datasets spanning different brain regions, species, and scRNA-seq technologies, we show that PERSIST reliably identifies panels that provide more accurate prediction of the genome-wide expression profile, thereby capturing more information with fewer genes. PERSIST can be adapted to specific biological goals, and we demonstrate that PERSIST's binarization of gene expression levels enables models trained on scRNA-seq data to generalize with to spatial transcriptomics data, despite the complex shift between these technologies.

    View Publication Page
    03/15/23 | Fast and sensitive GCaMP calcium indicators for imaging neural populations.
    Zhang Y, Rozsa M, Liang Y, Bushey D, Wei Z, Zheng J, Reep D, Broussard GJ, Tsang A, Tsegaye G, Narayan S, Obara CJ, Lim J, Patel R, Zhang R, Ahrens MB, Turner GC, Wang SS, Korff WL, Schreiter ER, Svoboda K, Hasseman JP, Kolb I, Looger LL
    Nature. 2023 Mar 15:. doi: 10.1038/s41586-023-05828-9

    Calcium imaging with protein-based indicators is widely used to follow neural activity in intact nervous systems, but current protein sensors report neural activity at timescales much slower than electrical signalling and are limited by trade-offs between sensitivity and kinetics. Here we used large-scale screening and structure-guided mutagenesis to develop and optimize several fast and sensitive GCaMP-type indicators. The resulting 'jGCaMP8' sensors, based on the calcium-binding protein calmodulin and a fragment of endothelial nitric oxide synthase, have ultra-fast kinetics (half-rise times of 2 ms) and the highest sensitivity for neural activity reported for a protein-based calcium sensor. jGCaMP8 sensors will allow tracking of large populations of neurons on timescales relevant to neural computation.

    View Publication Page
    11/13/22 | Brain-wide measurement of protein turnover with high spatial and temporal resolution
    Boaz Mohar , Jonathan B. Grimm , Ronak Patel , Timothy A. Brown , Paul Tillberg , Luke D. Lavis , Nelson Spruston , Karel Svoboda
    bioRxiv. 2022 Nov 13:. doi: 10.1101/2022.11.12.516226

    Cells regulate function by synthesizing and degrading proteins. This turnover ranges from minutes to weeks, as it varies across proteins, cellular compartments, cell types, and tissues. Current methods for tracking protein turnover lack the spatial and temporal resolution needed to investigate these processes, especially in the intact brain, which presents unique challenges. We describe a pulse-chase method (DELTA) for measuring protein turnover with high spatial and temporal resolution throughout the body, including the brain. DELTA relies on rapid covalent capture by HaloTag of fluorophores that were optimized for bioavailability in vivo. The nuclear protein MeCP2 showed brain region- and cell type-specific turnover. The synaptic protein PSD95 was destabilized in specific brain regions by behavioral enrichment. A novel variant of expansion microscopy further facilitated turnover measurements at individual synapses. DELTA enables studies of adaptive and maladaptive plasticity in brain-wide neural circuits.

    View Publication Page
    Svoboda Lab
    10/04/22 | The Neurodata Without Borders ecosystem for neurophysiological data science.
    Rubel O, Tritt A, Ly R, Dichter BK, Ghosh S, Niu L, Baker P, Soltesz I, Ng L, Svoboda K, Frank L, Bouchard KE
    eLife. 2022 Oct 04;11:. doi: 10.7554/eLife.78362

    The neurophysiology of cells and tissues are monitored electrophysiologically and optically in diverse experiments and species, ranging from flies to humans. Understanding the brain requires integration of data across this diversity, and thus these data must be findable, accessible, interoperable, and reusable (FAIR). This requires a standard language for data and metadata that can coevolve with neuroscience. We describe design and implementation principles for a language for neurophysiology data. Our open-source software (Neurodata Without Borders, NWB) defines and modularizes the interdependent, yet separable, components of a data language. We demonstrate NWB's impact through unified description of neurophysiology data across diverse modalities and species. NWB exists in an ecosystem, which includes data management, analysis, visualization, and archive tools. Thus, the NWB data language enables reproduction, interchange, and reuse of diverse neurophysiology data. More broadly, the design principles of NWB are generally applicable to enhance discovery across biology through data FAIRness.

    View Publication Page
    Romani LabSvoboda Lab
    07/08/22 | Neural Algorithms and Circuits for Motor Planning.
    Inagaki HK, Chen S, Daie K, Finkelstein A, Fontolan L, Romani S, Svoboda K
    Annual Review Neuroscience. 2022 Jul 08;45:249-271. doi: 10.1146/annurev-neuro-092021-121730

    The brain plans and executes volitional movements. The underlying patterns of neural population activity have been explored in the context of movements of the eyes, limbs, tongue, and head in nonhuman primates and rodents. How do networks of neurons produce the slow neural dynamics that prepare specific movements and the fast dynamics that ultimately initiate these movements? Recent work exploits rapid and calibrated perturbations of neural activity to test specific dynamical systems models that are capable of producing the observed neural activity. These joint experimental and computational studies show that cortical dynamics during motor planning reflect fixed points of neural activity (attractors). Subcortical control signals reshape and move attractors over multiple timescales, causing commitment to specific actions and rapid transitions to movement execution. Experiments in rodents are beginning to reveal how these algorithms are implemented at the level of brain-wide neural circuits.

    View Publication Page
    Svoboda LabDarshan Lab
    06/18/22 | Distributing task-related neural activity across a cortical network through task-independent connections
    Christopher M. Kim , Arseny Finkelstein , Carson C. Chow , Karel Svoboda , Ran Darshan
    bioRxiv. 2022 Jun 18:. doi: 10.1101/2022.06.17.496618

    Task-related neural activity is widespread across populations of neurons during goal-directed behaviors. However, little is known about the synaptic reorganization and circuit mechanisms that lead to broad activity changes. Here we trained a limited subset of neurons in a spiking network with strong synaptic interactions to reproduce the activity of neurons in the motor cortex during a decision-making task. We found that task-related activity, resembling the neural data, emerged across the network, even in the untrained neurons. Analysis of trained networks showed that strong untrained synapses, which were independent of the task and determined the dynamical state of the network, mediated the spread of task-related activity. Optogenetic perturbations suggest that the motor cortex is strongly-coupled, supporting the applicability of the mechanism to cortical networks. Our results reveal a cortical mechanism that facilitates distributed representations of task-variables by spreading the activity from a subset of plastic neurons to the entire network through task-independent strong synapses.

    View Publication Page
    Svoboda Lab
    03/17/22 | A midbrain-thalamus-cortex circuit reorganizes cortical dynamics to initiate movement.
    Inagaki HK, Chen S, Ridder MC, Sah P, Li N, Yang Z, Hasanbegovic H, Gao Z, Gerfen CR, Svoboda K
    Cell. 2022 Mar 17;185(8):1065. doi: 10.1016/j.cell.2022.02.006

    Motor behaviors are often planned long before execution but only released after specific sensory events. Planning and execution are each associated with distinct patterns of motor cortex activity. Key questions are how these dynamic activity patterns are generated and how they relate to behavior. Here, we investigate the multi-regional neural circuits that link an auditory "Go cue" and the transition from planning to execution of directional licking. Ascending glutamatergic neurons in the midbrain reticular and pedunculopontine nuclei show short latency and phasic changes in spike rate that are selective for the Go cue. This signal is transmitted via the thalamus to the motor cortex, where it triggers a rapid reorganization of motor cortex state from planning-related activity to a motor command, which in turn drives appropriate movement. Our studies show how midbrain can control cortical dynamics via the thalamus for rapid and precise motor behavior.

    View Publication Page