Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block

Type of Publication

general_search_page-panel_pane_1 | views_panes

2547 Publications

Showing 2191-2200 of 2547 results
Your Criteria:
    08/23/12 | A subset of dopamine neurons signals reward for odour memory in Drosophila.
    Liu C, Placais P, Yamagata N, Pfeiffer BD, Aso Y, Friedrich AB, Siwanowicz I, Rubin GM, Preat T, Tanimoto H
    Nature. 2012 Aug 23;488(7412):512-6. doi: 10.1038/nature11304

    Animals approach stimuli that predict a pleasant outcome. After the paired presentation of an odour and a reward, Drosophila melanogaster can develop a conditioned approach towards that odour. Despite recent advances in understanding the neural circuits for associative memory and appetitive motivation, the cellular mechanisms for reward processing in the fly brain are unknown. Here we show that a group of dopamine neurons in the protocerebral anterior medial (PAM) cluster signals sugar reward by transient activation and inactivation of target neurons in intact behaving flies. These dopamine neurons are selectively required for the reinforcing property of, but not a reflexive response to, the sugar stimulus. In vivo calcium imaging revealed that these neurons are activated by sugar ingestion and the activation is increased on starvation. The output sites of the PAM neurons are mainly localized to the medial lobes of the mushroom bodies (MBs), where appetitive olfactory associative memory is formed. We therefore propose that the PAM cluster neurons endow a positive predictive value to the odour in the MBs. Dopamine in insects is known to mediate aversive reinforcement signals. Our results highlight the cellular specificity underlying the various roles of dopamine and the importance of spatially segregated local circuits within the MBs.

    View Publication Page
    08/17/12 | Hippocampal place fields emerge upon single-cell manipulation of excitability during behavior.
    Lee D, Lin B, Lee AK
    Science. 2012 Aug 17;337:849-53. doi: 10.1126/science.1221489

    The origin of the spatial receptive fields of hippocampal place cells has not been established. A hippocampal CA1 pyramidal cell receives thousands of synaptic inputs, mostly from other spatially tuned neurons; however, how the postsynaptic neuron’s cellular properties determine the response to these inputs during behavior is unknown. We discovered that, contrary to expectations from basic models of place cells and neuronal integration, a small, spatially uniform depolarization of the spatially untuned somatic membrane potential of a silent cell leads to the sudden and reversible emergence of a spatially tuned subthreshold response and place-field spiking. Such gating of inputs by postsynaptic neuronal excitability reveals a cellular mechanism for receptive field origin and may be critical for the formation of hippocampal memory representations.

    View Publication Page
    Gonen Lab
    08/12/12 | The structure of purified kinetochores reveals multiple microtubule-attachment sites.
    Gonen S, Akiyoshi B, Iadanza MG, Shi D, Duggan N, Biggins S, Gonen T
    Nature Structural & Molecular Biology. 2012 Aug 12;19(9):925-9. doi: 10.1038/nsmb.2358

    Chromosomes must be accurately partitioned to daughter cells to prevent aneuploidy, a hallmark of many tumors and birth defects. Kinetochores are the macromolecular machines that segregate chromosomes by maintaining load-bearing attachments to the dynamic tips of microtubules. Here, we present the structure of isolated budding-yeast kinetochore particles, as visualized by EM and electron tomography of negatively stained preparations. The kinetochore appears as an  126-nm particle containing a large central hub surrounded by multiple outer globular domains. In the presence of microtubules, some particles also have a ring that encircles the microtubule. Our data, showing that kinetochores bind to microtubules via multivalent attachments, lay the foundation to uncover the key mechanical and regulatory mechanisms by which kinetochores control chromosome segregation and cell division.

    View Publication Page
    Sternson Lab
    08/09/12 | Deconstruction of a neural circuit for hunger.
    Atasoy D, Betley JN, Su HH, Sternson SM
    Nature. 2012 Aug 9;488(7410):172-7. doi: 10.1038/nature11270

    Hunger is a complex behavioural state that elicits intense food seeking and consumption. These behaviours are rapidly recapitulated by activation of starvation-sensitive AGRP neurons, which present an entry point for reverse-engineering neural circuits for hunger. Here we mapped synaptic interactions of AGRP neurons with multiple cell populations in mice and probed the contribution of these distinct circuits to feeding behaviour using optogenetic and pharmacogenetic techniques. An inhibitory circuit with paraventricular hypothalamus (PVH) neurons substantially accounted for acute AGRP neuron-evoked eating, whereas two other prominent circuits were insufficient. Within the PVH, we found that AGRP neurons target and inhibit oxytocin neurons, a small population that is selectively lost in Prader-Willi syndrome, a condition involving insatiable hunger. By developing strategies for evaluating molecularly defined circuits, we show that AGRP neuron suppression of oxytocin neurons is critical for evoked feeding. These experiments reveal a new neural circuit that regulates hunger state and pathways associated with overeating disorders.

    View Publication Page
    08/01/12 | Activity dynamics and behavioral correlates of CA3 and CA1 hippocampal pyramidal neurons.
    Mizuseki K, Royer S, Diba K, Buzsáki G
    Hippocampus. 2012 Aug;22(8):1659-80. doi: 10.1002/hipo.22002

    The CA3 and CA1 pyramidal neurons are the major principal cell types of the hippocampus proper. The strongly recurrent collateral system of CA3 cells and the largely parallel-organized CA1 neurons suggest that these regions perform distinct computations. However, a comprehensive comparison between CA1 and CA3 pyramidal cells in terms of firing properties, network dynamics, and behavioral correlations is sparse in the intact animal. We performed large-scale recordings in the dorsal hippocampus of rats to quantify the similarities and differences between CA1 (n > 3,600) and CA3 (n > 2,200) pyramidal cells during sleep and exploration in multiple environments. CA1 and CA3 neurons differed significantly in firing rates, spike burst propensity, spike entrainment by the theta rhythm, and other aspects of spiking dynamics in a brain state-dependent manner. A smaller proportion of CA3 than CA1 cells displayed prominent place fields, but place fields of CA3 neurons were more compact, more stable, and carried more spatial information per spike than those of CA1 pyramidal cells. Several other features of the two cell types were specific to the testing environment. CA3 neurons showed less pronounced phase precession and a weaker position versus spike-phase relationship than CA1 cells. Our findings suggest that these distinct activity dynamics of CA1 and CA3 pyramidal cells support their distinct computational roles.

    View Publication Page
    Cui Lab
    08/01/12 | Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation.
    Si K, Fiolka R, Cui M
    Nature Photonics. 2012 Aug;6:657. doi: doi:10.1038/nphoton.2012.205

    Fluorescence imaging has revolutionized biomedical research over the past three decades. Its high molecular specificity and unrivalled single-molecule-level sensitivity have enabled breakthroughs in a number of research fields. For in vivo applications its major limitation is its superficial imaging depth, a result of random scattering in biological tissues causing exponential attenuation of the ballistic component of a light wave. Here, we present fluorescence imaging beyond the ballistic regime by combining single-cycle pulsed ultrasound modulation and digital optical phase conjugation. We demonstrate a near-isotropic three-dimensional localized sound–light interaction zone. With the exceptionally high optical gain provided by the digital optical phase conjugation system, we can deliver sufficient optical power to a focus inside highly scattering media for not only fluorescence imaging but also a variety of linear and nonlinear spectroscopy measurements. This technology paves the way for many important applications in both fundamental biology research and clinical studies.

    View Publication Page
    Gonen Lab
    08/01/12 | Recent progress in membrane protein structures and investigation methods.
    Gonen T, Waksman G
    Current Opinion in Structural Biology. 2012 Aug;22(4):467-8. doi: 10.1016/j.sbi.2012.07.002
    Tjian Lab
    08/01/12 | Transcription initiation by human RNA polymerase II visualized at single-molecule resolution.
    Revyakin A, Zhang Z, Coleman RA, Li Y, Inouye C, Lucas JK, Park S, Chu S, Tjian R
    Genes & Development. 2012 Aug 1;26:1691-702. doi: 10.1101/gad.194936.112

    Forty years of classical biochemical analysis have identified the molecular players involved in initiation of transcription by eukaryotic RNA polymerase II (Pol II) and largely assigned their functions. However, a dynamic picture of Pol II transcription initiation and an understanding of the mechanisms of its regulation have remained elusive due in part to inherent limitations of conventional ensemble biochemistry. Here we have begun to dissect promoter-specific transcription initiation directed by a reconstituted human Pol II system at single-molecule resolution using fluorescence video-microscopy. We detected several stochastic rounds of human Pol II transcription from individual DNA templates, observed attenuation of transcription by promoter mutations, observed enhancement of transcription by activator Sp1, and correlated the transcription signals with real-time interactions of holo-TFIID molecules at individual DNA templates. This integrated single-molecule methodology should be applicable to studying other complex biological processes.

    View Publication Page
    07/27/12 | Neuroscience. The mind of a male?
    Chklovskii DB, Bargmann CI
    Science. 2012 Jul 27;337:416-7. doi: 10.1126/science.1225853
    07/26/12 | An olfactory subsystem that mediates high-sensitivity detection of volatile amines.
    Pacifico R, Dewan A, Cawley D, Guo C, Bozza T
    Cell Rep. 2012 Jul 26;2(1):76-88. doi: 10.1016/j.celrep.2012.06.006

    Olfactory stimuli are detected by over 1,000 odorant receptors in mice, with each receptor being mapped to specific glomeruli in the olfactory bulb. The trace amine-associated receptors (TAARs) are a small family of evolutionarily conserved olfactory receptors whose contribution to olfaction remains enigmatic. Here, we show that a majority of the TAARs are mapped to a discrete subset of glomeruli in the dorsal olfactory bulb of the mouse. This TAAR projection is distinct from the previously described class I and class II domains, and is formed by a sensory neuron population that is restricted to express TAAR genes prior to choice. We also show that the dorsal TAAR glomeruli are selectively activated by amines at low concentrations. Our data uncover a hard-wired, parallel input stream in the main olfactory pathway that is specialized for the detection of volatile amines.

    View Publication Page