Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block

Type of Publication

general_search_page-panel_pane_1 | views_panes

2335 Publications

Showing 41-50 of 2335 results
Your Criteria:
    06/29/23 | Neuronal wiring diagram of an adult brain.
    Dorkenwald S, Matsliah A, Sterling AR, Schlegel P, Yu S, McKellar CE, Lin A, Costa M, Eichler K, Yin Y, Silversmith W, Schneider-Mizell C, Jordan CS, Brittain D, Halageri A, Kuehner K, Ogedengbe O, Morey R, Gager J, Kruk K, Perlman E, Yang R, Deutsch D, Bland D, Sorek M, Lu R, Macrina T, Lee K, Bae JA, Mu S, Nehoran B, Mitchell E, Popovych S, Wu J, Jia Z, Castro M, Kemnitz N, Ih D, Bates AS, Eckstein N, Funke J, Collman F, Bock DD, Jefferis GS, Seung HS, Murthy M, FlyWire Consortium
    bioRxiv. 2023 Jun 29:. doi: 10.1101/2023.06.27.546656

    Connections between neurons can be mapped by acquiring and analyzing electron microscopic (EM) brain images. In recent years, this approach has been applied to chunks of brains to reconstruct local connectivity maps that are highly informative, yet inadequate for understanding brain function more globally. Here, we present the first neuronal wiring diagram of a whole adult brain, containing 5×10 chemical synapses between ∼130,000 neurons reconstructed from a female . The resource also incorporates annotations of cell classes and types, nerves, hemilineages, and predictions of neurotransmitter identities. Data products are available by download, programmatic access, and interactive browsing and made interoperable with other fly data resources. We show how to derive a projectome, a map of projections between regions, from the connectome. We demonstrate the tracing of synaptic pathways and the analysis of information flow from inputs (sensory and ascending neurons) to outputs (motor, endocrine, and descending neurons), across both hemispheres, and between the central brain and the optic lobes. Tracing from a subset of photoreceptors all the way to descending motor pathways illustrates how structure can uncover putative circuit mechanisms underlying sensorimotor behaviors. The technologies and open ecosystem of the FlyWire Consortium set the stage for future large-scale connectome projects in other species.

    View Publication Page
    06/29/23 | Stochastic coding: a conserved feature of odor representations and its implications for odor discrimination
    Shyam Srinivasan , Simon Daste , Mehrab Modi , Glenn Turner , Alexander Fleischmann , Saket Navlakha
    bioRxiv. 2023 Jun 29:. doi: 10.1101/2023.06.27.546757

    Sparse coding is thought to improve discrimination of sensory stimuli by reducing overlap between their representations. Two factors, however, can offset sparse coding's advantages. Similar sensory stimuli have significant overlap, and responses vary across trials. To elucidate the effect of these two factors, we analyzed odor responses in the fly and mouse olfactory regions implicated in learning and discrimination --- the Mushroom Body (MB) and the Piriform Cortex (PCx). In both species, we show that neuronal responses fall along a continuum from extremely reliable across trials to extremely variable or stochastic. Computationally, we show that the range of observed variability arises from probabilistic synapses in inhibitory feedback connections within central circuits rather than sensory noise, as is traditionally assumed. We propose this coding scheme to be advantageous for coarse- and fine-odor discrimination. More reliable cells enable quick discrimination between dissimilar odors. For similar odors, however, these cells overlap, and do not provide distinguishing information. By contrast, more unreliable cells are decorrelated for similar odors, providing distinguishing information, though this requires extended training with more trials. Overall, we have uncovered a stochastic coding scheme that is conserved in vertebrates and invertebrates, and we identify a candidate mechanism, based on variability in a winner-take-all inhibitory circuit, that improves discrimination with training.

    View Publication Page
    06/27/23 | A scalable implementation of the recursive least-squares algorithm for training spiking neural networks
    Benjamin J. Arthur , Christopher M. Kim , Susu Chen , Stephan Preibisch , Ran Darshan
    Frontiers in Neuroinformatics. 2023 Jun 27:. doi: 10.3389/fninf.2023.1099510

    Training spiking recurrent neural networks on neuronal recordings or behavioral tasks has become a prominent tool to study computations in the brain. With an increasing size and complexity of neural recordings, there is a need for fast algorithms that can scale to large datasets. We present optimized CPU and GPU implementations of the recursive least-squares algorithm in spiking neural networks. The GPU implementation allows training networks to reproduce neural activity of an order of millions neurons at order of magnitude times faster than the CPU implementation. We demonstrate this by applying our algorithm to reproduce the activity of > 66, 000 recorded neurons of a mouse performing a decision-making task. The fast implementation enables efficient training of large-scale spiking models, thus allowing for in-silico study of the dynamics and connectivity underlying multi-area computations.

    View Publication Page
    06/27/23 | An engineered biosensor enables dynamic aspartate measurements in living cells
    Kristian Davidsen , Jonathan S Marvin , Abhi Aggarwal , Timothy A Brown , Lucas B Sullivan
    bioRxiv. 2023 Jun 27:. doi: 10.1101/2023.06.27.546775

    Intracellular levels of the amino acid aspartate are responsive to changes in metabolism in mammalian cells and can correspondingly alter cell function, highlighting the need for robust tools to measure aspartate abundance. However, comprehensive understanding of aspartate metabolism has been limited by the throughput, cost, and static nature of the mass spectrometry based measurements that are typically employed to measure aspartate levels. To address these issues, we have developed a GFP-based sensor of aspartate (jAspSnFR3), where the fluorescence intensity corresponds to aspartate concentration. As a purified protein, the sensor has a 20-fold increase in fluorescence upon aspartate saturation, with dose dependent fluorescence changes covering a physiologically relevant aspartate concentration range and no significant off target binding. Expressed in mammalian cell lines, sensor intensity correlated with aspartate levels measured by mass spectrometry and could resolve temporal changes in intracellular aspartate from genetic, pharmacological, and nutritional manipulations. These data demonstrate the utility of jAspSnFR3 and highlight the opportunities it provides for temporally resolved and high throughput applications of variables that affect aspartate levels.

    View Publication Page
    06/27/23 | Method To Diversify Cyanine Chromophore Functionality Enables Improved Biomolecule Tracking and Intracellular Imaging.
    Usama SM, Marker SC, Li D, Caldwell DR, Stroet M, Patel NL, Tebo AG, Hernot S, Kalen JD, Schnermann M
    Journal of the American Chemical Society. 2023 Jun 27;145(27):14647–14659. doi: 10.1021/jacs.3c01765

    Heptamethine indocyanines are invaluable probes for near-infrared (NIR) imaging. Despite broad use, there are only a few synthetic methods to assemble these molecules, and each has significant limitations. Here, we report the use of pyridinium benzoxazole (PyBox) salts as heptamethine indocyanine precursors. This method is high yielding, simple to implement, and provides access to previously unknown chromophore functionality. We applied this method to create molecules to address two outstanding objectives in NIR fluorescence imaging. First, we used an iterative approach to develop molecules for protein-targeted tumor imaging. When compared to common NIR fluorophores, the optimized probe increases the tumor specificity of monoclonal antibody (mAb) and nanobody conjugates. Second, we developed cyclizing heptamethine indocyanines with the goal of improving cellular uptake and fluorogenic properties. By modifying both the electrophilic and nucleophilic components, we demonstrate that the solvent sensitivity of the ring-open/ring-closed equilibrium can be modified over a wide range. We then show that a chloroalkane derivative of a compound with tuned cyclization properties undergoes particularly efficient no-wash live cell imaging using organelle-targeted HaloTag self-labeling proteins. Overall, the chemistry reported here broadens the scope of accessible chromophore functionality, and, in turn, enables the discovery of NIR probes with promising properties for advanced imaging applications.

    View Publication Page
    06/26/23 | New genetic tools for mushroom body output neurons in Drosophila
    Rubin GM, Aso Y
    bioRxiv. 2023 Jun 26:. doi: 10.1101/2023.06.23.546330

    How memories of past events influence behavior is a key question in neuroscience. The major associative learning center in Drosophila, the Mushroom Body (MB), communicates to the rest of the brain through Mushroom Body Output Neurons (MBONs). While 21 MBON cell types have their dendrites confined to small compartments of the MB lobes, analysis of EM connectomes revealed the presence of an additional 14 MBON cell types that are atypical in having dendritic input both within the MB lobes and in adjacent brain regions. Genetic reagents for manipulating atypical MBONs and experimental data on their functions has been lacking. In this report we describe new cell-type-specific GAL4 drivers for many MBONs, including the majority of atypical MBONs. Using these genetic reagents, we conducted optogenetic activation screening to examine their ability to drive behaviors and learning. These reagents provide important new tools for the study of complex behaviors in Drosophila.

    View Publication Page
    06/22/23 | Small-field visual projection neurons detect translational optic flow and support walking control
    Mathew D. Isaacson , Jessica L. M. Eliason , Aljoscha Nern , Edward M. Rogers , Gus K. Lott , Tanya Tabachnik , William J. Rowell , Austin W. Edwards , Wyatt L. Korff , Gerald M. Rubin , Kristin Branson , Michael B. Reiser
    bioRxiv. 2023 Jun 22:. doi: 10.1101/2023.06.21.546024

    Animals rely on visual motion for navigating the world, and research in flies has clarified how neural circuits extract information from moving visual scenes. However, the major pathways connecting these patterns of optic flow to behavior remain poorly understood. Using a high-throughput quantitative assay of visually guided behaviors and genetic neuronal silencing, we discovered a region in Drosophila’s protocerebrum critical for visual motion following. We used neuronal silencing, calcium imaging, and optogenetics to identify a single cell type, LPC1, that innervates this region, detects translational optic flow, and plays a key role in regulating forward walking. Moreover, the population of LPC1s can estimate the travelling direction, such as when gaze direction diverges from body heading. By linking specific cell types and their visual computations to specific behaviors, our findings establish a foundation for understanding how the nervous system uses vision to guide navigation.

    View Publication Page
    06/20/23 | Input density tunes Kenyon cell sensory responses in the Drosophila mushroom body.
    Ahmed M, Rajagopalan AE, Pan Y, Li Y, Williams DL, Pedersen EA, Thakral M, Previero A, Close KC, Christoforou CP, Cai D, Turner GC, Clowney EJ
    Current Biology. 2023 Jun 20:. doi: 10.1016/j.cub.2023.05.064

    The ability to discriminate sensory stimuli with overlapping features is thought to arise in brain structures called expansion layers, where neurons carrying information about sensory features make combinatorial connections onto a much larger set of cells. For 50 years, expansion coding has been a prime topic of theoretical neuroscience, which seeks to explain how quantitative parameters of the expansion circuit influence sensory sensitivity, discrimination, and generalization. Here, we investigate the developmental events that produce the quantitative parameters of the arthropod expansion layer, called the mushroom body. Using Drosophila melanogaster as a model, we employ genetic and chemical tools to engineer changes to circuit development. These allow us to produce living animals with hypothesis-driven variations on natural expansion layer wiring parameters. We then test the functional and behavioral consequences. By altering the number of expansion layer neurons (Kenyon cells) and their dendritic complexity, we find that input density, but not cell number, tunes neuronal odor selectivity. Simple odor discrimination behavior is maintained when the Kenyon cell number is reduced and augmented by Kenyon cell number expansion. Animals with increased input density to each Kenyon cell show increased overlap in Kenyon cell odor responses and become worse at odor discrimination tasks.

    View Publication Page
    06/20/23 | Ten-fold Robust Expansion Microscopy.
    Damstra HG, Mohar B, Eddison M, Akhmanova A, Kapitein LC, Tillberg PW
    Bio-Protocol. 2023 Jun 20;13(12):e4698. doi: 10.21769/BioProtoc.4698

    Expansion microscopy (ExM) is a powerful technique to overcome the diffraction limit of light microscopy that can be applied in both tissues and cells. In ExM, samples are embedded in a swellable polymer gel to physically expand the sample and isotropically increase resolution in x, y, and z. By systematic exploration of the ExM recipe space, we developed a novel ExM method termed Ten-fold Robust Expansion Microscopy (TREx) that, as the original ExM method, requires no specialized equipment or procedures. TREx enables ten-fold expansion of both thick mouse brain tissue sections and cultured human cells, can be handled easily, and enables high-resolution subcellular imaging with a single expansion step. Furthermore, TREx can provide ultrastructural context to subcellular protein localization by combining antibody-stained samples with off-the-shelf small molecule stains for both total protein and membranes.

    View Publication Page
    06/20/23 | The contribution of inflammatory astrocytes to BBB impairments in a brain-chip model of Parkinson's disease.
    de Rus Jacquet A, Alpaugh M, Denis HL, Tancredi JL, Boutin M, Decaestecker J, Beauparlant C, Herrmann L, Saint-Pierre M, Parent M, Droit A, Breton S, Cicchetti F
    Nature Communications. 2023 Jun 20;14(1):3651. doi: 10.1038/s41467-023-39038-8

    Astrocyte dysfunction has previously been linked to multiple neurodegenerative disorders including Parkinson's disease (PD). Among their many roles, astrocytes are mediators of the brain immune response, and astrocyte reactivity is a pathological feature of PD. They are also involved in the formation and maintenance of the blood-brain barrier (BBB), but barrier integrity is compromised in people with PD. This study focuses on an unexplored area of PD pathogenesis by characterizing the interplay between astrocytes, inflammation and BBB integrity, and by combining patient-derived induced pluripotent stem cells with microfluidic technologies to generate a 3D human BBB chip. Here we report that astrocytes derived from female donors harboring the PD-related LRRK2 G2019S mutation are pro-inflammatory and fail to support the formation of a functional capillary in vitro. We show that inhibition of MEK1/2 signaling attenuates the inflammatory profile of mutant astrocytes and rescues BBB formation, providing insights into mechanisms regulating barrier integrity in PD. Lastly, we confirm that vascular changes are also observed in the human postmortem substantia nigra of both males and females with PD.

    View Publication Page