Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block

Type of Publication

general_search_page-panel_pane_1 | views_panes

2600 Publications

Showing 41-50 of 2600 results
Your Criteria:
    Romani LabFitzgerald Lab
    11/01/24 | From the fly connectome to exact ring attractor dynamics
    Biswas T, Stanoev A, Romani S, Fitzgerald JE
    bioRxiv. 2024 Nov 01:. doi: 10.1101/2024.11.01.621596

    A cognitive compass enabling spatial navigation requires neural representation of heading direction (HD), yet the neural circuit architecture enabling this representation remains unclear. While various network models have been proposed to explain HD systems, these models rely on simplified circuit architectures that are incompatible with empirical observations from connectomes. Here we construct a novel network model for the fruit fly HD system that satisfies both connectome-derived architectural constraints and the functional requirement of continuous heading representation. We characterize an ensemble of continuous attractor networks where compass neurons providing local mutual excitation are coupled to inhibitory neurons. We discover a new mechanism where continuous heading representation emerges from combining symmetric and anti-symmetric activity patterns. Our analysis reveals three distinct realizations of these networks that all match observed compass neuron activity but differ in their predictions for inhibitory neuron activation patterns. Further, we found that deviations from these realizations can be compensated by cell-type-specific rescaling of synaptic weights, which could be potentially achieved through neuromodulation. This framework can be extended to incorporate the complete fly central complex connectome and could reveal principles of neural circuits representing other continuous quantities, such as spatial location, across insects and vertebrates.

    View Publication Page
    Looger Lab
    10/31/24 | GESIAP3.0: Sensor-based Image Analysis Program for Transmission Visualization In Vivo
    Zhu RE, Diao X, Liu X, Ru Q, Wu Z, Zhang Z, Looger LL, Zhu J
    bioRxiv. 2024 Oct 31:. doi: 10.1101/2024.10.28.620522

    Synaptic transmission mediated by various neurotransmitters influences a wide range of behaviors. However, understanding how neuromodulatory transmitters encode diverse behaviors and affect their functions remains challenging. Here, we introduce GESIAP3.0, an advanced, third-generation image analysis program based on genetically encoded sensors. This tool enables precise quantitative analysis of transmission in both awake, freely moving animals and immobilized subjects. GESIAP3.0 incorporates movement correction algorithms that effectively eliminate image displacement in behaving animals while optimizing synaptic information extraction and simplifying computations on commodity computers. Quantitative analysis of cholinergic, dopaminergic, and serotonergic transmission, corrected for tissue movement, revealed synaptic properties consistent with measurements from ex vivo wide-field and in vivo two-photon imaging under stable conditions. This validates the applicability of GESIAP3.0 for analyzing synaptic properties of neuromodulatory transmission in behaving animals.

    View Publication Page
    10/30/24 | Leukocytes use endothelial membrane tunnels to extravasate the vasculature
    van der Meer W, van Steen AC, Mahlandt E, Rolas L, Wang H, Arts J, Kempers L, Grönloh M, Schoon RM, Driessen A, van Rijssel J, Klaassen I, Schlingemann RO, Manavski Y, Hoogenboezem M, Boon RA, Khuon S, Wait E, Heddleston J, Chew T, Nolte MA, Nourshargh S, Goedhart J, van Buul JD
    bioRxiv. 2024 Oct 30:. doi: 10.1101/2024.10.28.620560

    Upon inflammation, leukocytes extravasate through endothelial cells. When they extravasate in a paracellular manner, it is generally accepted that neighbouring endothelial cells physically disconnect to open cell-cell junctions, allowing leukocytes to cross. When carefully examining endothelial junctions, we found a partial membrane overlap of endothelial cells beyond VE-cadherin distribution. These overlaps are regulated by actin polymerization and, although marked by, do not require PECAM-1, nor VE-cadherin. Neutrophils prefer wider membrane overlaps as exit sites. Detailed 3D analysis of endothelial membrane dynamics during paracellular neutrophil transmigration in real-time, at high spatiotemporal resolution using resonant confocal and lattice light-sheet imaging, revealed that overlapping endothelial membranes form a tunnel during neutrophil transmigration. These tunnels are formed by the neutrophil lifting the membrane of the upper endothelial cell while indenting and crawling over the membrane of the underlying endothelial cell. Our work shows that endothelial cells do not simply retract upon passage of neutrophils but provide membrane tunnels, allowing neutrophils to extravasate. This discovery defines the 3D multicellular architecture in which the paracellular transmigration of neutrophils occurs.

    View Publication Page
    10/29/24 | Anti-seizure effects of norepinephrine-induced free fatty acid release.
    Li B, Sun Q, Ding F, Xu Q, Kang N, Xue Y, Ladron-de-Guevara A, Hirase H, Weikop P, Gong S, Nathan S, Nedergaard M
    Cell Metab. 2024 Oct 29:. doi: 10.1016/j.cmet.2024.10.011

    The brain's ability to rapidly transition between sleep, quiet wakefulness, and states of high vigilance is remarkable. Cerebral norepinephrine (NE) plays a key role in promoting wakefulness, but how does the brain avoid neuronal hyperexcitability upon arousal? Here, we show that NE exposure results in the generation of free fatty acids (FFAs) within the plasma membrane from both astrocytes and neurons. In turn, FFAs dampen excitability by differentially modulating the activity of astrocytic and neuronal Na, K, ATPase. Direct application of FFA to the occipital cortex in awake, behaving mice dampened visual-evoked potential (VEP). Conversely, blocking FFA production via local application of a lipase inhibitor heightened VEP and triggered seizure-like activity. These results suggest that FFA release is a crucial step in NE signaling that safeguards against hyperexcitability. Targeting lipid-signaling pathways may offer a novel therapeutic approach for seizure prevention.

    View Publication Page
    10/24/24 | Structure, interaction, and nervous connectivity of beta cell primary cilia
    Andreas Müller , Nikolai Klena , Song Pang , Leticia Elizabeth Galicia Garcia , Davud Sulaymankhil , Oleksandra Topcheva , Monika Seliskar , Hassan Mziaut , Eyke Schöniger , Daniela Friedland , Nicole Kipke , Susanne Kretschmar , Carla Münster , Jürgen Weitz , Marius Distler , Thomas Kurth , Deborah Schmidt , Harald F. Hess , C. Shan Xu , Gaia Pigino , Michele Solimena
    Nat Commun. 2024 Oct 24;15(1):9168. doi: 10.1038/s41467-024-53348-5

    Primary cilia are sensory organelles present in many cell types, partaking in various signaling processes. Primary cilia of pancreatic beta cells play pivotal roles in paracrine signaling and their dysfunction is linked to diabetes. Yet, the structural basis for their functions is unclear. We present three-dimensional reconstructions of beta cell primary cilia by electron and expansion microscopy. These cilia are spatially confined within deep ciliary pockets or narrow spaces between cells, lack motility components and display an unstructured axoneme organization. Furthermore, we observe a plethora of beta cell cilia-cilia and cilia-cell interactions with other islet and non-islet cells. Most remarkably, we have identified and characterized axo-ciliary synapses between beta cell cilia and the cholinergic islet innervation. These findings highlight the beta cell cilia's role in islet connectivity, pointing at their function in integrating islet intrinsic and extrinsic signals and contribute to understanding their significance in health and diabetes.

    View Publication Page
    10/22/24 | Rapid Whole-Organ Characterization via Quantitative Light-Sheet Microscopy
    Chen L, Su Y, Qian S, Zhou L, Han T, Wang C, Jiang R, Ding Z, Guo M, Liu Z
    Laser & Photonics Reviews. 2024 Oct 22:2401177. doi: 10.1002/lpor.202401177

    Whole-organ imaging and characterization at a submicron level provide abundant information on development and diseases while remaining a big challenge, especially in the context of time load. Herein, a quantitative light-sheet microscopy platform that enabled highly time-efficient assessments of fibrous structures within the intact cleared tissue is developed. Dual-view inverted selective plane illumination microscopy (diSPIM), followed by improved registration and deconvolution, led to submicron isotropic imaging of mouse upper genital tract with one hundred-fold speed-ups than previous efforts. Further, optical metrics quantifying 3D local density and structural complexity of targets based on parallel and vectorized convolution in both spatial and frequency domains are developed. Collectively, ≈400–2000 fold increases in time efficiency counting for imaging, postprocessing, and quantitative characterization compared to the traditional method is gained. Using this platform, automatic identification of medulla and cortex within the mouse ovary at over 90% overlap with manual selection by anatomy experts is achieved. Additionally, heterogeneous distributions of immune cells in the mouse ovary and fallopian tube, offering a unique perspective for understanding the immune microenvironment are discovered. This work paves the way for future whole-organ study, and exhibits potential with promise for offering mechanistic insights into physiological and pathological alterations of biological tissues.

    View Publication Page
    10/21/24 | Cell type-specific driver lines targeting the Drosophila central complex and their use to investigate neuropeptide expression and sleep regulation
    Wolff T, Eddison M, Chen N, Nern A, Sundaramurthi P, Sitaraman D, Rubin GM
    bioRxiv. 2024 Oct 21:. doi: 10.1101/2024.10.21.619448

    The central complex (CX) plays a key role in many higher-order functions of the insect brain including navigation and activity regulation. Genetic tools for manipulating individual cell types, and knowledge of what neurotransmitters and neuromodulators they express, will be required to gain mechanistic understanding of how these functions are implemented. We generated and characterized split-GAL4 driver lines that express in individual or small subsets of about half of CX cell types. We surveyed neuropeptide and neuropeptide receptor expression in the central brain using fluorescent in situ hybridization. About half of the neuropeptides we examined were expressed in only a few cells, while the rest were expressed in dozens to hundreds of cells. Neuropeptide receptors were expressed more broadly and at lower levels. Using our GAL4 drivers to mark individual cell types, we found that 51 of the 85 CX cell types we examined expressed at least one neuropeptide and 21 expressed multiple neuropeptides. Surprisingly, all co-expressed a small neurotransmitter. Finally, we used our driver lines to identify CX cell types whose activation affects sleep, and identified other central brain cell types that link the circadian clock to the CX. The well-characterized genetic tools and information on neuropeptide and neurotransmitter expression we provide should enhance studies of the CX.

    View Publication Page
    10/18/24 | Altruistic feeding and cell-cell signaling during bacterial differentiation actively enhance phenotypic heterogeneity
    Taylor B. Updegrove , Thomas Delerue , V. Anantharaman , Hyomoon Cho , Carissa Chan , Thomas Nipper , Hyoyoung Choo-Wosoba , Lisa Jenkins , Lixia Zhang , Yijun Su , Hari Shroff , Jiji Chen , Carole Bewley , L. Aravind , Kumaran S Ramamurthi
    Sci Adv. 2024 Oct 18;10(42):eadq0791. doi: 10.1126/sciadv.adq0791

    Starvation triggers bacterial spore formation, a committed differentiation program that transforms a vegetative cell into a dormant spore. Cells in a population enter sporulation nonuniformly to secure against the possibility that favorable growth conditions, which put sporulation-committed cells at a disadvantage, may resume. This heterogeneous behavior is initiated by a passive mechanism: stochastic activation of a master transcriptional regulator. Here, we identify a cell-cell communication pathway containing the proteins ShfA (YabQ) and ShfP (YvnB) that actively promotes phenotypic heterogeneity, wherein Bacillus subtilis cells that start sporulating early use a calcineurin-like phosphoesterase to release glycerol, which simultaneously acts as a signaling molecule and a nutrient to delay nonsporulating cells from entering sporulation. This produced a more diverse population that was better poised to exploit a sudden influx of nutrients compared to those generating heterogeneity via stochastic gene expression alone. Although conflict systems are prevalent among microbes, genetically encoded cooperative behavior in unicellular organisms can evidently also boost inclusive fitness.

    View Publication Page
    10/18/24 | FITM2 deficiency results in ER lipid accumulation, ER stress, and reduced apolipoprotein B lipidation and VLDL triglyceride secretion in vitro and in mouse liver.
    Wang H, Nikain C, Fortounas KI, Amengual J, Tufanli O, La Forest M, Yu Y, Wang MC, Watts R, Lehner R, Qiu Y, Cai M, Kurland IJ, Goldberg IJ, Rajan S, Hussain MM, Brodsky JL, Fisher EA
    Mol Metab. 2024 Oct 18:102048. doi: 10.1016/j.molmet.2024.102048

    OBJECTIVES: Triglycerides (TGs) associate with apolipoprotein B100 (apoB100) to form very low density lipoproteins (VLDLs) in the liver. The repertoire of factors that facilitate this association is incompletely understood. FITM2, an integral endoplasmic reticulum (ER) protein, was originally discovered as a factor participating in cytosolic lipid droplet (LD) biogenesis in tissues that do not form VLDL. We hypothesized that in the liver, in addition to promoting cytosolic LD formation, FITM2 would also transfer TG from its site of synthesis in the ER membrane to nascent VLDL particles within the ER lumen.

    METHODS: Experiments were conducted using a rat hepatic cell line (McArdle-RH7777, or McA cells), an established model of mammalian lipoprotein metabolism, and mice. FITM2 expression was reduced using siRNA in cells and by liver specific cre-recombinase mediated deletion of the Fitm2 gene in mice. Effects of FITM2 deficiency on VLDL assembly and secretion in vitro and in vivo were measured by multiple methods, including density gradient ultracentrifugation, chromatography, mass spectrometry, stimulated Raman scattering (SRS) microscopy, sub-cellular fractionation, immunoprecipitation, immunofluorescence, and electron microscopy.

    MAIN FINDINGS: 1) FITM2-deficient hepatic cells in vitro and in vivo secrete TG-depleted VLDL particles, but the number of particles is unchanged compared to controls; 2) FITM2 deficiency in mice on a high fat diet (HFD) results in decreased plasma TG levels. The number of apoB100-containing lipoproteins remains similar, but shift from VLDL to low density lipoprotein (LDL) density; 3) Both in vitro and in vivo, when TG synthesis is stimulated and FITM2 is deficient, TG accumulates in the ER, and despite its availability this pool is unable to fully lipidate apoB100 particles; 4) FITM2 deficiency disrupts ER morphology and results in ER stress.

    PRINCIPAL CONCLUSIONS: The results suggest that FITM2 contributes to VLDL lipidation, especially when newly synthesized hepatic TG is in abundance. In addition to its fundamental importance in VLDL assembly, the results also suggest that under dysmetabolic conditions, FITM2 may be an important factor in the partitioning of TG between cytosolic LDs and VLDL particles.

    View Publication Page
    10/17/24 | Image processing tools for petabyte-scale light sheet microscopy data.
    Xiongtao Ruan , Matthew Mueller , Gaoxiang Liu , Frederik Görlitz , Tian-Ming Fu , Daniel E. Milkie , Joshua Lillvis , Alison Killilea , Eric Betzig , Srigokul Upadhyayula
    Nat. Methods. 2024 Oct 17:. doi: 10.1038/s41592-024-02475-4

    Light sheet microscopy is a powerful technique for high-speed three-dimensional imaging of subcellular dynamics and large biological specimens. However, it often generates datasets ranging from hundreds of gigabytes to petabytes in size for a single experiment. Conventional computational tools process such images far slower than the time to acquire them and often fail outright due to memory limitations. To address these challenges, we present PetaKit5D, a scalable software solution for efficient petabyte-scale light sheet image processing. This software incorporates a suite of commonly used processing tools that are optimized for memory and performance. Notable advancements include rapid image readers and writers, fast and memory-efficient geometric transformations, high-performance Richardson-Lucy deconvolution and scalable Zarr-based stitching. These features outperform state-of-the-art methods by over one order of magnitude, enabling the processing of petabyte-scale image data at the full teravoxel rates of modern imaging cameras. The software opens new avenues for biological discoveries through large-scale imaging experiments.

    View Publication Page