Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
general_search_page-panel_pane_1 | views_panes

20 Publications

Showing 1-10 of 20 results
Your Criteria:
    Zuker Lab
    09/02/11 | A gustotopic map of taste qualities in the mammalian brain.
    Chen X, Gabitto M, Peng Y, Ryba NJ, Zuker CS
    Science. 2011 Sep 2;333(6047):1262-6. doi: 10.1126/science.1204076

    The taste system is one of our fundamental senses, responsible for detecting and responding to sweet, bitter, umami, salty, and sour stimuli. In the tongue, the five basic tastes are mediated by separate classes of taste receptor cells each finely tuned to a single taste quality. We explored the logic of taste coding in the brain by examining how sweet, bitter, umami, and salty qualities are represented in the primary taste cortex of mice. We used in vivo two-photon calcium imaging to demonstrate topographic segregation in the functional architecture of the gustatory cortex. Each taste quality is represented in its own separate cortical field, revealing the existence of a gustotopic map in the brain. These results expose the basic logic for the central representation of taste.

    View Publication Page
    Zuker Lab
    03/11/10 | The cells and peripheral representation of sodium taste in mice.
    Chandrashekar J, Kuhn C, Oka Y, Yarmolinsky DA, Hummler E, Ryba NJ, Zuker CS
    Nature. 2010 Mar 11;464(7286):297-301. doi: 10.1038/nature08783

    Salt taste in mammals can trigger two divergent behavioural responses. In general, concentrated saline solutions elicit robust behavioural aversion, whereas low concentrations of NaCl are typically attractive, particularly after sodium depletion. Notably, the attractive salt pathway is selectively responsive to sodium and inhibited by amiloride, whereas the aversive one functions as a non-selective detector for a wide range of salts. Because amiloride is a potent inhibitor of the epithelial sodium channel (ENaC), ENaC has been proposed to function as a component of the salt-taste-receptor system. Previously, we showed that four of the five basic taste qualities-sweet, sour, bitter and umami-are mediated by separate taste-receptor cells (TRCs) each tuned to a single taste modality, and wired to elicit stereotypical behavioural responses. Here we show that sodium sensing is also mediated by a dedicated population of TRCs. These taste cells express the epithelial sodium channel ENaC, and mediate behavioural attraction to NaCl. We genetically engineered mice lacking ENaCalpha in TRCs, and produced animals exhibiting a complete loss of salt attraction and sodium taste responses. Together, these studies substantiate independent cellular substrates for all five basic taste qualities, and validate the essential role of ENaC for sodium taste in mice.

    View Publication Page
    Zuker Lab
    10/16/09 | Common sense about taste: from mammals to insects.
    Yarmolinsky DA, Zuker CS, Ryba NJ
    Cell. 2009 Oct 16;139(2):234-44. doi: 10.1016/j.cell.2009.10.001

    The sense of taste is a specialized chemosensory system dedicated to the evaluation of food and drink. Despite the fact that vertebrates and insects have independently evolved distinct anatomic and molecular pathways for taste sensation, there are clear parallels in the organization and coding logic between the two systems. There is now persuasive evidence that tastant quality is mediated by labeled lines, whereby distinct and strictly segregated populations of taste receptor cells encode each of the taste qualities.

    View Publication Page
    Zuker Lab
    10/16/09 | The taste of carbonation.
    Chandrashekar J, Yarmolinsky D, von Buchholtz L, Oka Y, Sly W, Ryba NJ, Zuker CS
    Science. 2009 Oct 16;326:443-5. doi: 10.1126/science.1174601

    Carbonated beverages are commonly available and immensely popular, but little is known about the cellular and molecular mechanisms underlying the perception of carbonation in the mouth. In mammals, carbonation elicits both somatosensory and chemosensory responses, including activation of taste neurons. We have identified the cellular and molecular substrates for the taste of carbonation. By targeted genetic ablation and the silencing of synapses in defined populations of taste receptor cells, we demonstrated that the sour-sensing cells act as the taste sensors for carbonation, and showed that carbonic anhydrase 4, a glycosylphosphatidylinositol-anchored enzyme, functions as the principal CO2 taste sensor. Together, these studies reveal the basis of the taste of carbonation as well as the contribution of taste cells in the orosensory response to CO2.

    View Publication Page
    Zuker Lab
    03/20/08 | Preserving cell shape under environmental stress.
    Cook B, Hardy RW, McConnaughey WB, Zuker CS
    Nature. 2008 Mar 20;452(7185):361-4. doi: 10.1038/nature06603

    Maintaining cell shape and tone is crucial for the function and survival of cells and tissues. Mechanotransduction relies on the transformation of minuscule mechanical forces into high-fidelity electrical responses. When mechanoreceptors are stimulated, mechanically sensitive cation channels open and produce an inward transduction current that depolarizes the cell. For this process to operate effectively, the transduction machinery has to retain integrity and remain unfailingly independent of environmental changes. This is particularly challenging for poikilothermic organisms, where changes in temperature in the environment may impact the function of mechanoreceptor neurons. Thus, we wondered how insects whose habitat might quickly vary over several tens of degrees of temperature manage to maintain highly effective mechanical senses. We screened for Drosophila mutants with defective mechanical responses at elevated ambient temperatures, and identified a gene, spam, whose role is to protect the mechanosensory organ from massive cellular deformation caused by heat-induced osmotic imbalance. Here we show that Spam protein forms an extracellular shield that guards mechanosensory neurons from environmental insult. Remarkably, heterologously expressed Spam protein also endowed other cells with superb defence against physically and chemically induced deformation. We studied the mechanical impact of Spam coating and show that spam-coated cells are up to ten times stiffer than uncoated controls. Together, these results help explain how poikilothermic organisms preserve the architecture of critical cells during environmental stress, and illustrate an elegant and simple solution to such challenge.

    View Publication Page
    Zuker Lab
    11/16/06 | The receptors and cells for mammalian taste.
    Chandrashekar J, Hoon MA, Ryba NJ, Zuker CS
    Nature. 2006 Nov 16;444(7117):288-94. doi: 10.1038/nature05401

    The emerging picture of taste coding at the periphery is one of elegant simplicity. Contrary to what was generally believed, it is now clear that distinct cell types expressing unique receptors are tuned to detect each of the five basic tastes: sweet, sour, bitter, salty and umami. Importantly, receptor cells for each taste quality function as dedicated sensors wired to elicit stereotypic responses.

    View Publication Page
    Zuker Lab
    10/12/06 | Transforming the architecture of compound eyes.
    Zelhof AC, Hardy RW, Becker A, Zuker CS
    Nature. 2006 Oct 12;443(7112):696-9. doi: 10.1038/nature05128

    Eyes differ markedly in the animal kingdom, and are an extreme example of the evolution of multiple anatomical solutions to light detection and image formation. A salient feature of all photoreceptor cells is the presence of a specialized compartment (disc outer segments in vertebrates, and microvillar rhabdomeres in insects), whose primary role is to accommodate the millions of light receptor molecules required for efficient photon collection. In insects, compound eyes can have very different inner architectures. Fruitflies and houseflies have an open rhabdom system, in which the seven rhabdomeres of each ommatidium are separated from each other and function as independent light guides. In contrast, bees and various mosquitoes and beetle species have a closed system, in which rhabdomeres within each ommatidium are fused to each other, thus sharing the same visual axis. To understand the transition between open and closed rhabdom systems, we isolated and characterized the role of Drosophila genes involved in rhabdomere assembly. Here we show that Spacemaker, a secreted protein expressed only in the eyes of insects with open rhabdom systems, acts together with Prominin and the cell adhesion molecule Chaoptin to choreograph the partitioning of rhabdomeres into an open system. Furthermore, the complete loss of spacemaker (spam) converts an open rhabdom system to a closed one, whereas its targeted expression to photoreceptors of a closed system markedly reorganizes the architecture of the compound eyes to resemble an open system. Our results provide a molecular atlas for the construction of microvillar assemblies and illustrate the critical effect of differences in a single structural protein in morphogenesis.

    View Publication Page
    Zuker Lab
    08/24/06 | The cells and logic for mammalian sour taste detection.
    Huang AL, Chen X, Hoon MA, Chandrashekar J, Guo W, Tränkner D, Ryba NJ, Zuker CS
    Nature. 2006 Aug 24;442(7105):934-8. doi: 10.1038/nature05084

    Mammals taste many compounds yet use a sensory palette consisting of only five basic taste modalities: sweet, bitter, sour, salty and umami (the taste of monosodium glutamate). Although this repertoire may seem modest, it provides animals with critical information about the nature and quality of food. Sour taste detection functions as an important sensory input to warn against the ingestion of acidic (for example, spoiled or unripe) food sources. We have used a combination of bioinformatics, genetic and functional studies to identify PKD2L1, a polycystic-kidney-disease-like ion channel, as a candidate mammalian sour taste sensor. In the tongue, PKD2L1 is expressed in a subset of taste receptor cells distinct from those responsible for sweet, bitter and umami taste. To examine the role of PKD2L1-expressing taste cells in vivo, we engineered mice with targeted genetic ablations of selected populations of taste receptor cells. Animals lacking PKD2L1-expressing cells are completely devoid of taste responses to sour stimuli. Notably, responses to all other tastants remained unaffected, proving that the segregation of taste qualities even extends to ionic stimuli. Our results now establish independent cellular substrates for four of the five basic taste modalities, and support a comprehensive labelled-line mode of taste coding at the periphery. Notably, PKD2L1 is also expressed in specific neurons surrounding the central canal of the spinal cord. Here we demonstrate that these PKD2L1-expressing neurons send projections to the central canal, and selectively trigger action potentials in response to decreases in extracellular pH. We propose that these cells correspond to the long-sought components of the cerebrospinal fluid chemosensory system. Taken together, our results suggest a common basis for acid sensing in disparate physiological settings.

    View Publication Page
    Zuker Lab
    03/10/05 | The receptors and coding logic for bitter taste.
    Mueller KL, Hoon MA, Erlenbach I, Chandrashekar J, Zuker CS, Ryba NJ
    Nature. 2005 Mar 10;434(7030):225-9. doi: 10.1038/nature03352

    The sense of taste provides animals with valuable information about the nature and quality of food. Bitter taste detection functions as an important sensory input to warn against the ingestion of toxic and noxious substances. T2Rs are a family of approximately 30 highly divergent G-protein-coupled receptors (GPCRs) that are selectively expressed in the tongue and palate epithelium and are implicated in bitter taste sensing. Here we demonstrate, using a combination of genetic, behavioural and physiological studies, that T2R receptors are necessary and sufficient for the detection and perception of bitter compounds, and show that differences in T2Rs between species (human and mouse) can determine the selectivity of bitter taste responses. In addition, we show that mice engineered to express a bitter taste receptor in ’sweet cells’ become strongly attracted to its cognate bitter tastants, whereas expression of the same receptor (or even a novel GPCR) in T2R-expressing cells resulted in mice that are averse to the respective compounds. Together these results illustrate the fundamental principle of bitter taste coding at the periphery: dedicated cells act as broadly tuned bitter sensors that are wired to mediate behavioural aversion.

    View Publication Page
    Zuker Lab
    05/14/04 | Decoding cilia function: defining specialized genes required for compartmentalized cilia biogenesis.
    Avidor-Reiss T, Maer AM, Koundakjian E, Polyanovsky A, Keil T, Subramaniam S, Zuker CS
    Cell. 2004 May 14;117(4):527-39

    The evolution of the ancestral eukaryotic flagellum is an example of a cellular organelle that became dispensable in some modern eukaryotes while remaining an essential motile and sensory apparatus in others. To help define the repertoire of specialized proteins needed for the formation and function of cilia, we used comparative genomics to analyze the genomes of organisms with prototypical cilia, modified cilia, or no cilia and identified approximately 200 genes that are absent in the genomes of nonciliated eukaryotes but are conserved in ciliated organisms. Importantly, over 80% of the known ancestral proteins involved in cilia function are included in this small collection. Using Drosophila as a model system, we then characterized a novel family of proteins (OSEGs: outer segment) essential for ciliogenesis. We show that osegs encode components of a specialized transport pathway unique to the cilia compartment and are related to prototypical intracellular transport proteins.

    View Publication Page