Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block

Type of Publication

general_search_page-panel_pane_1 | views_panes

1416 Publications

Showing 111-120 of 1416 results
Your Criteria:
    06/01/18 | Proximity labeling: spatially resolved proteomic mapping for neurobiology.
    Han S, Li J, Ting AY
    Curr Opin Neurobiol. 06/2018;50:17-23. doi: 10.1016/j.conb.2017.10.015

    Understanding signaling pathways in neuroscience requires high-resolution maps of the underlying protein networks. Proximity-dependent biotinylation with engineered enzymes, in combination with mass spectrometry-based quantitative proteomics, has emerged as a powerful method to dissect molecular interactions and the localizations of endogenous proteins. Recent applications to neuroscience have provided insights into the composition of sub-synaptic structures, including the synaptic cleft and inhibitory post-synaptic density. Here we compare the different enzymes and small-molecule probes for proximity labeling in the context of cultured neurons and tissue, review existing studies, and provide technical suggestions for the in vivo application of proximity labeling.

    View Publication Page
    05/10/18 | Identification of a transporter complex responsible for the cytosolic entry of nitrogen-containing-bisphosphonates.
    Yu Z, Surface LE, Park CY, Horlbeck MA, Wyant GA, Abu-Remaileh M, Peterson TR, Sabatini DM, Weissman JS, O'Shea EK
    eLife. 2018 May 10;7:. doi: 10.7554/eLife.36620

    Nitrogen-containing-bisphosphonates (N-BPs) are a class of drugs widely prescribed to treat osteoporosis and other bone-related diseases. Although previous studies have established that N-BPs function by inhibiting the mevalonate pathway in osteoclasts, the mechanism by which N-BPs enter the cytosol from the extracellular space to reach their molecular target is not understood. Here we implemented a CRISPRi-mediated genome-wide screen and identified (solute carrier family 37 member A3) as a gene required for the action of N-BPs in mammalian cells. We observed that SLC37A3 forms a complex with ATRAID (all-trans retinoic acid-induced differentiation factor), a previously identified genetic target of N-BPs. SLC37A3 and ATRAID localize to lysosomes and are required for releasing N-BP molecules that have trafficked to lysosomes through fluid-phase endocytosis into the cytosol. Our results elucidate the route by which N-BPs are delivered to their molecular target, addressing a key aspect of the mechanism of action of N-BPs that may have significant clinical relevance.

    View Publication Page
    04/13/18 | Linking neuronal lineage and wiring specificity.
    Li H, Shuster SA, Li J, Luo L
    Neural Dev. 04/2018;13(1):5. doi: 10.1186/s13064-018-0102-0

    Brain function requires precise neural circuit assembly during development. Establishing a functional circuit involves multiple coordinated steps ranging from neural cell fate specification to proper matching between pre- and post-synaptic partners. How neuronal lineage and birth timing influence wiring specificity remains an open question. Recent findings suggest that the relationships between lineage, birth timing, and wiring specificity vary in different neuronal circuits. In this review, we summarize our current understanding of the cellular, molecular, and developmental mechanisms linking neuronal lineage and birth timing to wiring specificity in a few specific systems in Drosophila and mice, and review different methods employed to explore these mechanisms.

    View Publication Page
    03/21/18 | Development of a Rubredoxin-Type Center Embedded in a de Dovo-Designed Three-Helix Bundle
    Tebo AG, Pinter TB, García-Serres R, Speelman AL, Tard C, Sénèque O, Blondin G, Latour J, Penner-Hahn J, Lehnert N, Pecoraro VL
    Biochemistry. 03/2018;57:2308 – 2316. doi: 10.1021/acs.biochem.8b00091

    Protein design is a powerful tool for interrogating the basic requirements for the function of a metal site in a way that allows for the selective incorporation of elements that are important for function. Rubredoxins are small electron transfer proteins with a reduction potential centered near 0 mV (vs normal hydrogen electrode). All previous attempts to design a rubredoxin site have focused on incorporating the canonical CXXC motifs in addition to reproducing the peptide fold or using flexible loop regions to define the morphology of the site. We have produced a rubredoxin site in an utterly different fold, a three-helix bundle. The spectra of this construct mimic the ultraviolet–visible, Mössbauer, electron paramagnetic resonance, and magnetic circular dichroism spectra of native rubredoxin. Furthermore, the measured reduction potential suggests that this rubredoxin analogue could function similarly. Thus, we have shown that an α-helical scaffold sustains a rubredoxin site that can cycle with the desired potential between the Fe(II) and Fe(III) states and reproduces the spectroscopic characteristics of this electron transport protein without requiring the classic rubredoxin protein fold.

    View Publication Page
    02/20/18 | Structure of full-length human TRPM4.
    Duan J, Li Z, Li J, Santa-Cruz A, Sanchez-Martinez S, Zhang J, Clapham DE
    Proceedings of the National Academy of Sciences of the United States of America. 2018 Feb 20;115(10):2377-82. doi: 10.1073/pnas.1722038115

    Transient receptor potential melastatin subfamily member 4 (TRPM4) is a widely distributed, calcium-activated, monovalent-selective cation channel. Mutations in human TRPM4 (hTRPM4) result in progressive familial heart block. Here, we report the electron cryomicroscopy structure of hTRPM4 in a closed, Na-bound, apo state at pH 7.5 to an overall resolution of 3.7 Å. Five partially hydrated sodium ions are proposed to occupy the center of the conduction pore and the entrance to the coiled-coil domain. We identify an upper gate in the selectivity filter and a lower gate at the entrance to the cytoplasmic coiled-coil domain. Intramolecular interactions exist between the TRP domain and the S4-S5 linker, N-terminal domain, and N and C termini. Finally, we identify aromatic interactions via π-π bonds and cation-π bonds, glycosylation at an N-linked extracellular site, a pore-loop disulfide bond, and 24 lipid binding sites. We compare and contrast this structure with other TRP channels and discuss potential mechanisms of regulation and gating of human full-length TRPM4.

    View Publication Page
    01/08/18 | Modifying the Steric Properties in the Second Coordination Sphere of Designed Peptides Leads to Enhancement of Nitrite Reductase Activity
    Koebke KJ, Yu F, Salerno E, Stappen CV, Tebo AG, Penner-Hahn JE, Pecoraro VL
    Angewandte Chemie International Edition. 01/2018;57:3954 – 3957. doi: 10.1002/anie.201712757

    Protein design is a useful strategy to interrogate the protein structure‐function relationship. We demonstrate using a highly modular 3‐stranded coiled coil (TRI‐peptide system) that a functional type 2 copper center exhibiting copper nitrite reductase (NiR) activity exhibits the highest homogeneous catalytic efficiency under aqueous conditions for the reduction of nitrite to NO and H2O. Modification of the amino acids in the second coordination sphere of the copper center increases the nitrite reductase activity up to 75‐fold compared to previously reported systems. We find also that steric bulk can be used to enforce a three‐coordinate CuI in a site, which tends toward two‐coordination with decreased steric bulk. This study demonstrates the importance of the second coordination sphere environment both for controlling metal‐center ligation and enhancing the catalytic efficiency of metalloenzymes and their analogues.

    View Publication Page
    Kainmueller Lab
    12/01/17 | Cell dynamics underlying oriented growth of the Drosophila wing imaginal disc.
    Dye NA, Popović M, Spannl S, Etournay R, Kainmüller D, Ghosh S, Myers EW, Jülicher F, Eaton S
    Development (Cambridge, England). 2017 Dec 01;144(23):4406-4421. doi: 10.1242/dev.155069

    Quantitative analysis of the dynamic cellular mechanisms shaping the Drosophila wing during its larval growth phase has been limited, impeding our ability to understand how morphogen patterns regulate tissue shape. Such analysis requires explants to be imaged under conditions that maintain both growth and patterning, as well as methods to quantify how much cellular behaviors change tissue shape. Here, we demonstrate a key requirement for the steroid hormone 20-hydroxyecdysone (20E) in the maintenance of numerous patterning systems in vivo and in explant culture. We find that low concentrations of 20E support prolonged proliferation in explanted wing discs in the absence of insulin, incidentally providing novel insight into the hormonal regulation of imaginal growth. We use 20E-containing media to observe growth directly and to apply recently developed methods for quantitatively decomposing tissue shape changes into cellular contributions. We discover that whereas cell divisions drive tissue expansion along one axis, their contribution to expansion along the orthogonal axis is cancelled by cell rearrangements and cell shape changes. This finding raises the possibility that anisotropic mechanical constraints contribute to growth orientation in the wing disc.

    View Publication Page
    11/20/17 | Localized Lysosome Exocytosis Helps Breach Tissue Barriers
    Shaohe Wang , Kenneth M. Yamada
    Developmental Cell. 11/2017;43:377-378. doi: https://doi.org/10.1016/j.devcel.2017.11.005

    Cell invasion across basement membrane barriers is important in both normal development and cancer metastasis. In this issue of Developmental Cell, Naegeli et al. (2017) identify a mechanism for breaching basement membranes. Localized lysosome exocytosis fuels generation of large, invasive cellular protrusions that expand tiny basement membrane openings.

    View Publication Page
    11/16/17 | Classifying Drosophila Olfactory Projection Neuron Subtypes by Single-Cell RNA Sequencing.
    Li H, Horns F, Wu B, Xie Q, Li J, Li T, Luginbuhl DJ, Quake SR, Luo L
    Cell. 11/2017;171(5):1206-1220.e22. doi: 10.1016/j.cell.2017.10.019

    The definition of neuronal type and how it relates to the transcriptome are open questions. Drosophila olfactory projection neurons (PNs) are among the best-characterized neuronal types: different PN classes target dendrites to distinct olfactory glomeruli, while PNs of the same class exhibit indistinguishable anatomical and physiological properties. Using single-cell RNA sequencing, we comprehensively characterized the transcriptomes of most PN classes and unequivocally mapped transcriptomes to specific olfactory function for six classes. Transcriptomes of closely related PN classes exhibit the largest differences during circuit assembly but become indistinguishable in adults, suggesting that neuronal subtype diversity peaks during development. Transcription factors and cell-surface molecules are the most differentially expressed genes between classes and are highly informative in encoding cell identity, enabling us to identify a new lineage-specific transcription factor that instructs PN dendrite targeting. These findings establish that neuronal transcriptomic identity corresponds with anatomical and physiological identity defined by connectivity and function.

    View Publication Page
    10/17/13 | Homeostatic plasticity shapes the visual system’s first synapse
    Johnson RE, Tien N, Shen N, Pearson JT, Soto F, Kerschensteiner D
    Nature Communications. 10/2017;8(1):. doi: 10.1038/s41467-017-01332-7

    Vision in dim light depends on synapses between rods and rod bipolar cells (RBCs). Here, we find that these synapses exist in multiple configurations, in which single release sites of rods are apposed by one to three postsynaptic densities (PSDs). Single RBCs often form multiple PSDs with one rod; and neighboring RBCs share ~13% of their inputs. Rod-RBC synapses develop while ~7% of RBCs undergo programmed cell death (PCD). Although PCD is common throughout the nervous system, its influences on circuit development and function are not well understood. We generate mice in which ~53 and ~93% of RBCs, respectively, are removed during development. In these mice, dendrites of the remaining RBCs expand in graded fashion independent of light-evoked input. As RBC dendrites expand, they form fewer multi-PSD contacts with rods. Electrophysiological recordings indicate that this homeostatic co-regulation of neurite and synapse development preserves retinal function in dim light.

    View Publication Page