Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom


facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block

Type of Publication

general_search_page-panel_pane_1 | views_panes

1404 Publications

Showing 1301-1310 of 1404 results
Your Criteria:
    Baker Lab

    In Drosophila dosage compensation increases the rate of transcription of the male's X chromosome and depends on four autosomal male-specific lethal genes. We have cloned the msl-2 gene and shown that MSL-2 protein is co-localized with the other three MSL proteins at hundreds of sites along the male polytene X chromosome and that this binding requires the other three MSL proteins. msl-2 encodes a protein with a putative DNA-binding domain: the RING finger. MSL-2 protein is not produced in females and sequences in both the 5' and 3' UTRs are important for this sex-specific regulation. Furthermore, msl-2 pre-mRNA is alternatively spliced in a Sex-lethal-dependent fashion in its 5' UTR.

    View Publication Page
    07/01/95 | Toward simplifying and accurately formulating fragment assembly.
    Myers EW
    Journal of Computational Biology: A Journal of Computational Molecular Cell Biology. 1995 Summer;2(2):275-90

    The fragment assembly problem is that of reconstructing a DNA sequence from a collection of randomly sampled fragments. Traditionally, the objective of this problem has been to produce the shortest string that contains all the fragments as substrings, but in the case of repetitive target sequences this objective produces answers that are overcompressed. In this paper, the problem is reformulated as one of finding a maximum-likelihood reconstruction with respect to the two-sided Kolmogorov-Smirnov statistic, and it is argued that this is a better formulation of the problem. Next the fragment assembly problem is recast in graph-theoretic terms as one of finding a noncyclic subgraph with certain properties and the objectives of being shortest or maximally likely are also recast in this framework. Finally, a series of graph reduction transformations are given that dramatically reduce the size of the graph to be explored in practical instances of the problem. This reduction is very important as the underlying problems are NP-hard. In practice, the transformed problems are so small that simple branch-and-bound algorithms successfully solve them, thus permitting auxiliary experimental information to be taken into account in the form of overlap, orientation, and distance constraints.

    View Publication Page
    06/30/95 | Mechanisms of Drosophila retinal morphogenesis: the virtues of being progressive.
    Heberlein U, Moses K
    Cell. 1995 Jun 30;81(7):987-90
    06/16/95 | Yan functions as a general inhibitor of differentiation and is negatively regulated by activation of the Ras1/MAPK pathway.
    Rebay I, Rubin GM
    Cell. 1995 Jun 16;81(6):857-66. doi: 10.1186/gb-2007-8-7-r145

    Drosophila yan has been postulated to act as an antagonist of the proneural signal mediated by the sevenless/Ras1/MAPK pathway. We have mutagenized the eight MAPK phosphorylation consensus sites of yan and examined the effects of overexpressing the mutant protein in transgenic flies and transfected S2 cultured cells. Our results suggest that phosphorylation by MAPK affects the stability and subcellular localization of yan, resulting in rapid down-regulation of yan activity. Furthermore, MAPK-mediated down-regulation of yan function appears to be critical for the proper differentiation of both neuronal and nonneuronal tissues throughout development, suggesting that yan is an essential component of a general timing mechanism controlling the competence of a cell to respond to inductive signals.

    View Publication Page
    06/05/95 | Probing dendritic function with patch pipettes.
    Stuart G, Spruston N
    Curr Opin Neurobiol. 1995 Jun;5(3):389-94

    Most neurons in the CNS have complex, branching dendritic trees, which receive the majority of all synaptic input. As it is difficult to make electrical recordings from dendrites because of their small size, most of what is known about their electrical properties has been inferred from recordings made at the soma. By taking advantage of the higher resolution offered by improved optics, it is now possible to make patch-pipette recordings from the dendrites of neurons in brain slices under visual control. This new technique promises to provide valuable new information concerning dendritic function.

    View Publication Page
    05/26/95 | Addition of a 29 residue carboxyl-terminal tail converts a simple HMG box-containing protein into a transcriptional activator.
    Dairaghi DJ, Shadel GS, Clayton DA
    Journal of Molecular Biology. 1995 May 26;249(1):11-28. doi: 10.1101/gad.1352105

    Human mitochondrial transcription factor A (h-mtTFA) is essential for initiation of transcription from the two promoters located in the displacement-loop region of human mitochondrial DNA. This 25 kDa protein contains two tandem, HMG box DNA-binding domains separated by a 27 amino acid residue linker region and followed by a 25 residue carboxyl-terminal tail; both the linker and tail are rich in basic amino acid residues. Mutational analysis of h-mtTFA revealed that the tail region is important for specific DNA recognition and essential for transcriptional activation. The critical role of the human tail in transcription was confirmed by constructing chimeric proteins that exchanged similar regions between h-mtTFA and its Saccharomyces cerevisiae homolog, sc-mtTFA. Wild-type sc-mtTFA is unable to activate transcription from the human mitochondrial light-strand promoter (LSP). Addition of the human tail region to sc-mtTFA conferred LSP-specific promoter activation. In all of the different h-mtTFA mutations tested, transcriptional activation was correlated with specific DNA-binding activity, suggesting that these two functions may be inseparable, a situation entirely consistent with previous mutational analyses of human mitochondrial promoters.

    View Publication Page
    04/22/95 | Phylogenetic evidence that aphids, rather than plants, determine gall morphology
    David L Stern
    Proceedings of the Royal Society of London. Series B: Biological Sciences;260(1357):85-89. doi: 10.1098/rspb.1995.0063

    Many diverse taxa have evolved independently the habit of living in plant galls. For all but some viral galls, it is unknown whether plants produce galls as a specialized plant reaction to certain types of herbivory, or whether herbivores direct gall development. Here I present a phylogenetic analysis of gallforming cerataphidine aphids which demonstrates that gall morphology is extremely conservative with respect to aphid phylogeny, but variable with respect to plant taxonomy. In addition, the phylogeny reveals at least three host plant switches where the aphids produce galls most similar to the galls of their closest relatives, rather than galls similar to the galls of aphids already present on the host plant. These results suggest that aphids determine the details of gall morphology essentially extending their phenotype to include plant material. Based on this and other evidence, I suggest that the aphids and other galling insects manipulate latent plant developmental programmes to produce modified atavistic plant morphologies rather than create new forms de novo.

    View Publication Page
    04/14/95 | Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites.
    Spruston N, Schiller Y, Stuart G, Sakmann B
    Science. 1995 Apr 14;268(5208):297-300

    The temporal and spatial profile of activity-evoked changes in membrane potential and intracellular calcium concentration in the dendrites of hippocampal CA1 pyramidal neurons was examined with simultaneous somatic and dendritic patch-pipette recording and calcium imaging experiments. Action potentials are initiated close to the soma of these neurons and backpropagate into the dendrites in an activity-dependent manner; those occurring early in a train propagate actively, whereas those occurring later fail to actively invade the distal dendrites. Consistent with this finding, dendritic calcium transients evoked by single action potentials do not significantly attenuate with distance from the soma, whereas those evoked by trains attenuate substantially. Failure of action potential propagation into the distal dendrites often occurs at branch points. Consequently, neighboring regions of the dendritic tree can experience different voltage and calcium signals during repetitive action potential firing. The influence of backpropagating action potentials on synaptic integration and plasticity will therefore depend on both the extent of dendritic branching and the pattern of neuronal activity.

    View Publication Page
    03/01/95 | Strain-dependent variation in carbon source regulation of nucleus-encoded mitochondrial proteins of Saccharomyces cerevisiae.
    Brown TA, Trumpower BL
    Journal of Bacteriology. 1995 Mar;177(5):1380-2

    Nuclear genes encoding mitochondrial proteins are regulated by carbon source with significant heterogeneity among four Saccharomyces cerevisiae strains. This strain-dependent variation is seen both in respiratory capacity of the cells and in the expression of beta-galactosidase reporter fusions to the promoters of CYB2, CYC1, CYC3, MnSOD, and RPO41.

    View Publication Page
    02/23/95 | Growth and differentiation in the Drosophila eye coordinated by hedgehog.
    Heberlein U, Singh CM, Luk AY, Donohoe TJ
    Nature. 1995 Feb 23;373(6516):709-11. doi: 10.1038/373709a0

    Differentiation of the Drosophila retina is asynchronous: it starts at the posterior margin of the eye imaginal disc and progresses anteriorly over two days. During this time the disc continues to grow, increasing in size by approximately eightfold. An indentation in the epithelium, the morphogenetic furrow, marks the front edge of the differentiation wave. Anterior progression of the furrow is thought to be driven by signals emanating from differentiating photoreceptor cells in the posterior eye disc. A good candidate for such a signal is the product of the hedgehog (hh) gene; it is expressed, and presumably secreted, by differentiating photoreceptors and its function is required for continued furrow movement. Here we show that ectopic expression of hedgehog sets in motion ectopic furrows in the anterior eye disc. In addition to changes in cell shape, these ectopic furrows are associated with a tightly orchestrated series of events, including proliferation, cell cycle synchronization and pattern formation, that parallel normal furrow progression. We propose that the morphogenetic furrow coincides with a transient boundary that coordinates growth and differentiation of the eye disc, and that hedgehog is necessary and sufficient to propagate this boundary across the epithelium.

    View Publication Page