Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3865 Publications

Showing 3551-3560 of 3865 results
12/01/03 | Wind spectra and the response of the cercal system in the cockroach.
Rinberg D, Davidowitz H
Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology. 2003 Dec;189(12):867-76. doi: 10.1007/s00359-003-0460-9

Experiments on the cercal wind-sensing system of the American cockroach, Periplaneta americana, showed that the firing rate of the interneurons coding wind information depends on the bandwidth of random noise wind stimuli. The firing rate was shown to increase with decreases in the stimulus bandwidth, and be independent of changes in the total power of the stimulus with constant spectral composition. A detailed analysis of ethologically relevant stimulus parameters is presented. A phenomenological model of these relationships and their relevance to wind-mediated cockroach behavior is proposed.

View Publication Page
11/26/03 | Surface vibrational spectroscopy on shear-aligned poly(tetrafluoroethylene) films.
Ji N, Ostroverkhov V, Lagugné-Labarthet Fc, Shen Y
Journal of the American Chemical Society. 2003 Nov 26;125(47):14218-9. doi: 10.1021/ja037964l

Sum-frequency vibrational spectroscopy was used to obtain the first surface vibrational spectra of shear-deposited highly oriented poly(tetrafluoroethylene) (PTFE, Teflon) thin films. The surface PTFE chains appeared to lie along the shearing direction. Vibrational modes observed at 1142 and 1204 cm-1 were found to have the E1 symmetry, in support of some earlier analysis in the long-lasting controversy over the assignment of these modes.

View Publication Page
11/26/03 | The hyperpolarization-activated HCN1 channel is important for motor learning and neuronal integration by cerebellar Purkinje cells.
Nolan MF, Malleret G, Lee KH, Gibbs E, Dudman JT, Santoro B, Yin D, Thompson RF, Siegelbaum SA, Kandel ER, Morozov A
Cell. 2003 Nov 26;115(5):551-64. doi: 10.3389/fnana.2010.00147

In contrast to our increasingly detailed understanding of how synaptic plasticity provides a cellular substrate for learning and memory, it is less clear how a neuron’s voltage-gated ion channels interact with plastic changes in synaptic strength to influence behavior. We find, using generalized and regional knockout mice, that deletion of the HCN1 channel causes profound motor learning and memory deficits in swimming and rotarod tasks. In cerebellar Purkinje cells, which are a key component of the cerebellar circuit for learning of correctly timed movements, HCN1 mediates an inward current that stabilizes the integrative properties of Purkinje cells and ensures that their input-output function is independent of the previous history of their activity. We suggest that this nonsynaptic integrative function of HCN1 is required for accurate decoding of input patterns and thereby enables synaptic plasticity to appropriately influence the performance of motor activity.

View Publication Page
11/11/03 | Intensity versus identity coding in an olfactory system.
Stopfer M, Jayaraman V, Laurent G
Neuron. 2003 Sep 11;39(6):991-1004

We examined the encoding and decoding of odor identity and intensity by neurons in the antennal lobe and the mushroom body, first and second relays, respectively, of the locust olfactory system. Increased odor concentration led to changes in the firing patterns of individual antennal lobe projection neurons (PNs), similar to those caused by changes in odor identity, thus potentially confounding representations for identity and concentration. However, when these time-varying responses were examined across many PNs, concentration-specific patterns clustered by identity, resolving the apparent confound. This is because PN ensemble representations changed relatively continuously over a range of concentrations of each odorant. The PNs’ targets in the mushroom body-Kenyon cells (KCs)-had sparse identity-specific responses with diverse degrees of concentration invariance. The tuning of KCs to identity and concentration and the patterning of their responses are consistent with piecewise decoding of their PN inputs over oscillation-cycle length epochs.

View Publication Page
11/01/03 | Dopamine D1 receptors mediate CREB phosphorylation via phosphorylation of the NMDA receptor at Ser897-NR1.
Dudman JT, Eaton ME, Rajadhyaksha A, Macías W, Taher M, Barczak A, Kameyama K, Huganir R, Konradi C
Journal of Neurochemistry. 2003 Nov;87(4):922-34. doi: 10.3389/fnana.2010.00147

Addictive drugs such as amphetamine and cocaine stimulate the dopaminergic system, activate dopamine receptors and induce gene expression throughout the striatum. The signal transduction pathway leading from dopamine receptor stimulation at the synapse to gene expression in the nucleus has not been fully elucidated. Here, we present evidence that D1 receptor stimulation leads to phosphorylation of the transcription factor Ca2+ and cyclic AMP response element binding protein (CREB) in the nucleus by means of NMDA receptor-mediated Ca2+ signaling. Stimulation of D1 receptors induces the phosphorylation of Ser897 on the NR1 subunit by protein kinase A (PKA). This phosphorylation event is crucial for D1 receptor-mediated CREB phosphorylation. Dopamine cannot induce CRE-mediated gene expression in neurons transfected with a phosphorylation-deficient NR1 construct. Moreover, stimulation of D1 receptors or increase in cyclic AMP levels leads to an increase in cytosolic Ca2+ in the presence of glutamate, but not in the absence of glutamate, indicating the ability of dopamine and cyclic AMP to facilitate NMDA channel activity. The recruitment of the NMDA receptor signal transduction pathway by D1 receptors may provide a general mechanism for gene regulation that is fundamental for mechanisms of drug addiction and long-term memory.

View Publication Page
Gonen Lab
11/01/03 | Insertion of MP20 into lens fibre cell plasma membranes correlates with the formation of an extracellular diffusion barrier.
Grey AC, Jacobs MD, Gonen T, Kistler J, Donaldson PJ
Experimental Eye Research. 2003 Nov;77(5):567-74

It is known that during lens differentiation a number of fibre cell specific membrane proteins change their expression profiles. In this study we have investigated how the profiles of the two most abundant fibre cell membrane proteins AQP0 (formerly known as Major Intrinsic Protein, MIP) and MP20 change as a function of fibre cell differentiation. While AQP0 was always found associated with fibre cell membranes, MP20 was initially found in the cytoplasm of peripheral fibre cells before becoming inserted into the membranes of deeper fibre cells. To determine at what stage in fibre cell differentiation MP20 becomes inserted into the membrane, sections were double-labelled with an antibody against MP20, and propidium iodide, a marker of cell nuclei. This showed that membrane insertion of MP20 occurs in a discrete transition zone that coincided with the degradation of cell nuclei. To test the significance of the membrane insertion of MP20 to overall lens function, whole lenses were incubated for varying times in a solution containing either Texas Red-dextran or Lucifer yellow as markers of extracellular space. Lenses were fixed and then processed for immunocytochemistry. Analysis of these sections showed that both tracer dyes were excluded from the extracellular space in an area that coincided with insertion of MP20 into the plasma membrane. Our results suggest that the insertion of MP20 into fibre cell membranes coincides with the creation of a barrier that restricts the diffusion of molecules into the lens core via the extracellular space.

View Publication Page
Zuker Lab
10/31/03 | The receptors for mammalian sweet and umami taste.
Zhao GQ, Zhang Y, Hoon MA, Chandrashekar J, Erlenbach I, Ryba NJ, Zuker CS
Cell. 2003 Oct 31;115(3):255-66

Sweet and umami (the taste of monosodium glutamate) are the main attractive taste modalities in humans. T1Rs are candidate mammalian taste receptors that combine to assemble two heteromeric G-protein-coupled receptor complexes: T1R1+3, an umami sensor, and T1R2+3, a sweet receptor. We now report the behavioral and physiological characterization of T1R1, T1R2, and T1R3 knockout mice. We demonstrate that sweet and umami taste are strictly dependent on T1R-receptors, and show that selective elimination of T1R-subunits differentially abolishes detection and perception of these two taste modalities. To examine the basis of sweet tastant recognition and coding, we engineered animals expressing either the human T1R2-receptor (hT1R2), or a modified opioid-receptor (RASSL) in sweet cells. Expression of hT1R2 in mice generates animals with humanized sweet taste preferences, while expression of RASSL drives strong attraction to a synthetic opiate, demonstrating that sweet cells trigger dedicated behavioral outputs, but their tastant selectivity is determined by the nature of the receptors.

View Publication Page
Magee Lab
10/22/03 | Sleep deprivation causes behavioral, synaptic, and membrane excitability alterations in hippocampal neurons.
McDermott CM, LaHoste GJ, Chen C, Musto A, Bazan NG, Magee JC
The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 2003 Oct 22;23(29):9687-95. doi: 10.1002/cbic.201000254

Although the function of sleep remains elusive, several lines of evidence suggest that sleep has an important role in learning and memory. In light of the available data and with the prevalence of sleep deprivation (SD), we sought to determine the effect of SD on neuronal functioning. We found that the exposure of rats to 72 hr of primarily rapid eye movement SD impaired their subsequent performance on a hippocampus-dependent spatial learning task but had no effect on an amygdala-dependent learning task. To determine the underlying cellular level mechanisms of this hippocampal deficit, we examined the impact of SD on several fundamental aspects of membrane excitability and synaptic physiology in hippocampal CA1 pyramidal neurons and dentate gyrus granule cells. We found that neuronal excitability was severely reduced in CA1 neurons but not in granule cells and that the production of long-term potentiation of synaptic strength was inhibited in both areas. Using multiple SD methods we further attempted to differentiate the effects of sleep deprivation from those associated with the nonspecific stress induced by the sleep deprivation methods. Together these data suggest that failure to acquire adequate sleep produces several molecular and cellular level alterations that profoundly inhibit hippocampal functioning.

View Publication Page
10/19/03 | Purification, crystallization and preliminary crystallographic analysis of phosphoglucose isomerase from the hyperthermophilic archaeon Pyrococcus furiosus.
Akerboom J, Turnbull AP, Hargreaves D, Fisher M, de Geus D, Sedelnikova SE, Berrisford JM, Baker PJ, Verhees CH, van der Oost J, Rice DW
Acta Crystallographica. Section D, Biological Crystallography. 2003 Oct 19;59:1822-3

The glycolytic enzyme phosphoglucose isomerase catalyses the reversible isomerization of glucose 6-phosphate to fructose 6-phosphate. The phosphoglucose isomerase from the hyperthermophilic archaeon Pyrococcus furiosus, which shows no sequence similarity to any known bacterial or eukaryotic phosphoglucose isomerase, has been cloned and overexpressed in Escherichia coli, purified and subsequently crystallized by the hanging-drop method of vapour diffusion using 1.6 M sodium citrate as the precipitant at pH 6.5. Multiple-wavelength anomalous dispersive X-ray data have been collected to a maximum resolution of 1.92 A on a single selenomethionine-incorporated crystal. This crystal belongs to space group C2, with approximate unit-cell parameters a = 84.7

View Publication Page
10/15/03 | A test bed for insect-inspired robotic control.
Reiser MB, Dickinson MH
Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences. 2003 Oct 15;361(1811):2267-85. doi: 10.1016/j.cub.2010.06.072

Flying insects are remarkable examples of sophisticated sensory-motor control systems. Insects have solved the fundamental challenge facing the field of mobile robots: robust sensory-motor mapping. Control models based on insects can contribute much to the design of robotic control systems. We present our work on a preliminary robotic control system inspired by current behavioural and physiological models of the fruit fly, Drosophila melanogaster. We designed a five-degrees-of-freedom robotic system that serves as a novel simulation/mobile robot hybrid. This design has allowed us to implement a fly-inspired control system that uses visual and mechanosensory feedback. Our results suggest that a simple control scheme can yield surprisingly robust fly-like robotic behaviour.

View Publication Page