Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_secondary_menu | block
janelia7_blocks-janelia7_fake_breadcrumb | block
Lavis Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

4 Publications

Showing 1-4 of 4 results
Your Criteria:
    11/15/08 | A highly sensitive fluorogenic probe for cytochrome P450 activity in live cells.
    Yatzeck MM, Lavis LD, Chao T, Chandran SS, Raines RT
    Bioorganic & Medicinal Chemistry Letters. 2008 Nov 15;18(22):5864-6. doi: 10.1016/j.bmcl.2008.06.015

    A derivative of rhodamine 110 has been designed and assessed as a probe for cytochrome P450 activity. This probe is the first to utilize a ’trimethyl lock’ that is triggered by cleavage of an ether bond. In vitro, fluorescence was manifested by the CYP1A1 isozyme with k(cat)/K(M)=8.8x10(3)M(-1)s(-1) and K(M)=0.09microM. In cellulo, the probe revealed the induction of cytochrome P450 activity by the carcinogen 2,3,7,8-tetrachlorodibenzo-p-dioxin, and its repression by the chemoprotectant resveratrol.

    View Publication Page
    04/18/08 | Ester bonds in prodrugs.
    Lavis LD
    ACS Chemical Biology. 2008 Apr 18;3(4):203-6. doi: 10.1021/cb800065s

    A recent study challenges the oft-held notion that ester bonds in prodrug molecules are cleaved rapidly and completely inside cells by endogenous, nonspecific esterases. Structure-activity relationship studies on acylated sugars reveal that regioisomeric compounds display disparate biological activity, suggesting that ester bonds can persist in a cellular context.

    View Publication Page
    03/20/08 | Bright ideas for chemical biology.
    Lavis LD, Raines RT
    ACS Chemical Biology. 2008 Mar 20;3:142-55. doi: 10.1021/cb700248m

    Small-molecule fluorescent probes embody an essential facet of chemical biology. Although numerous compounds are known, the ensemble of fluorescent probes is based on a modest collection of modular "core" dyes. The elaboration of these dyes with diverse chemical moieties is enabling the precise interrogation of biochemical and biological systems. The importance of fluorescence-based technologies in chemical biology elicits a necessity to understand the major classes of small-molecule fluorophores. Here, we examine the chemical and photophysical properties of oft-used fluorophores and highlight classic and contemporary examples in which utility has been built upon these scaffolds.

    View Publication Page
    01/31/08 | Trimethyl lock: a stable chromogenic substrate for esterases.
    Levine MN, Lavis LD, Raines RT
    Molecules. 2008 Jan 31;13(2):204-11

    p-Nitrophenyl acetate is the most commonly used substrate for detecting the catalytic activity of esterases, including those that activate prodrugs in human cells. This substrate is unstable in aqueous solution, limiting its utility. Here, a stable chromogenic substrate for esterases is produced by the structural isolation of an acetyl ester and p-nitroaniline group using a trimethyl lock moiety. Upon ester hydrolysis, unfavorable steric interactions between the three methyl groups of this o-hydroxycinnamic acid derivative encourage rapid lactonization to form a hydrocoumarin and release p-nitroaniline. This "prochromophore" could find use in a variety of assays.

    View Publication Page